Games with ω -Automatic Preference Relations 50th MFCS, Warsaw, Poland

Véronique Bruyère

Christophe Grandmont Jean-François Raskin

August 25, 2025

Reactive systems

Continuous interactions between multiple independent agents with their own interests.

Reactive systems

Continuous interactions between multiple independent agents with their own interests.

- Objectives are neither fully aligned nor entirely antagonistic.
- It enables the study of rational behavior of agents.

Reactive systems

Continuous interactions between multiple independent agents with their own interests.

- Objectives are neither fully aligned nor entirely antagonistic.
- It enables the study of rational behavior of agents.
- → Study this rationality, ensure some specification under rational assumptions.

→ How to model these interactions?

→ Model interactions with games played on graphs.

→ Model interactions with games played on graphs.

Directed graph: (V, E)Set of players: $\mathcal{P} = \{1, \dots, n\}$ Arena $A = (V, E, \mathcal{P}, (V_i)_{\in \mathcal{P}})$ Partition of $V: (V_i)_{i \in \mathcal{P}}$

→ Model interactions with games played on graphs.

Directed graph:
$$(V, E)$$

Set of players: $\mathcal{P} = \{1, \dots, n\}$ Arena $A = (V, E, \mathcal{P}, (V_i)_{\in \mathcal{P}})$
Partition of $V: (V_i)_{i \in \mathcal{P}}$

- Play: $\pi \in \text{Plays} \subseteq V^{\omega}$ consistent with E, history: $h \in V^*$,
- Strategy for $i \in \mathcal{P}$: function $\sigma_i : V^*V_i \to V$, $hv \mapsto \sigma_i(hv)$.

Example - Games played on graphs

Define the following goals:

- player \circ wants to visit v_1 at least once,
- player \diamond wants to visit v_2 infinitely often.

Example - Games played on graphs

Define the following goals:

- player \circ wants to visit v_1 at least once,
- player ◊ wants to visit v₂ infinitely often.

Can players ensure their goals?

Example - Games played on graphs

Define the following goals:

- player \circ wants to visit v_1 at least once,
- player ◊ wants to visit v₂ infinitely often.

Can players ensure their goals?

No.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i$ stategy of player $i, \langle \sigma_{-i}, \tau_i \rangle_{v_0}$ is not better than $\langle \sigma \rangle_{v_0}$ for i.

- player wants to visit v₁,
- player \diamond wants to visit v_2 inf. often.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i$ stategy of player $i, \langle \sigma_{-i}, \tau_i \rangle_{v_0}$ is not better than $\langle \sigma \rangle_{v_0}$ for i.

Do there exist NEs from v_0 ?

- player wants to visit v₁,
- player \diamond wants to visit v_2 inf. often.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

Do there exist NEs from v_0 ?

1)
$$\sigma_{\diamond}(hv_3) = v_0$$
, $\sigma_{\circ}(hv_0) = v_3$.

- player \circ wants to visit v_1 ,
- player \diamond wants to visit v_2 inf. often.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

Do there exist NEs from v_0 ?

- 1) $\sigma_{\diamond}(hv_3) = v_0$, $\sigma_{\circ}(hv_0) = v_3$.
- 2) $\sigma'_{\diamond}(hv_3) = v_1$, $\sigma'_{\diamond}(hv_0) = v_2$ if v_1 in h, else v_3 .

- player wants to visit v₁,
- player \diamond wants to visit v_2 inf. often.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

- player ∘ wants to visit v₁,
- player \diamond wants to visit v_2 inf. often.

Do there exist NEs from v_0 ?

- 1) $\sigma_{\diamond}(hv_3) = v_0$, $\sigma_{\circ}(hv_0) = v_3$.
- 2) $\sigma'_{\diamond}(hv_3) = v_1$, $\sigma'_{\diamond}(hv_0) = v_2$ if v_1 in h, else v_3 .

NE 2) is strictly better than NE 1) for both players.

Broader objectives

Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$.

What if we take more complex objectives for both players?

Study NEs in all cases?

¹See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games.

Broader objectives

Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$.

What if we take more complex objectives for both players?

Study NEs in all cases?

Broader setting: "preference relations" $\prec_i \subseteq V^\omega \times V^\omega$ to compare plays.¹

¹See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games.

Broader objectives

Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$.

What if we take more complex objectives for both players?

Study NEs in all cases?

Broader setting: "preference relations" $\prec_i \subseteq V^{\omega} \times V^{\omega}$ to compare plays.¹

¹See, e.g., Bouyer et al., *Nash Equilibria for Reachability Objectives in Multi-player Timed Games*, or Pauly, Le Roux, *Equilibria in multi-player multi-outcome infinite sequential games*.

Properties of preference relations

Properties of preference relations

Usual properties

• Reflexivity: $\forall x, x < x$,

• Irreflexivity: $\forall x, x \neq x$,

• Transitivity: $\forall x, y, z, x < y \land y < z \Rightarrow x < z$,

• Totality: $\forall x, y, x \neq y \Rightarrow x < y \lor y < x$,

• ...

Properties of preference relations

Usual properties

- Reflexivity: $\forall x, x < x$,
- Irreflexivity: $\forall x, x \not\nmid x$,
- Transitivity: $\forall x, y, z, x < y \land y < z \Rightarrow x < z$,
- Totality: $\forall x, y, x \neq y \Rightarrow x < y \lor y < x$,
- ...

We expect < to have an order structure;

- strict partial order (irreflexive, transitive),
- or **preorder** (reflexive, transitive).

 \sim Define < with a deterministic parity automaton (DPA) on $V \times V$ that synchronously reads two ω -words.

 $\mathcal{L}(\mathcal{A}) \subseteq V^{\omega} \times V^{\omega}$ can be seen as a binary relation: ω -Automatic Relation!

Can we check whether < is a strict partial order?

Can we check whether < is a strict partial order?

Proposition

Deciding whether an ω -automatic relation < defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NLOGSPACE-complete.

Can we check whether < is a strict partial order?

Proposition

Deciding whether an ω -automatic relation \prec defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NLOGSPACE-complete.

Such a structure (V^{ω}, \prec) captured by ω -automata is called ω -automatic.

Can we check whether < is a strict partial order?

Proposition

Deciding whether an ω -automatic relation < defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NLOGSPACE-complete.

Such a structure (V^{ω}, \prec) captured by ω -automata is called ω -automatic.

Theorem [B. R. Hodgson, Décidabilité par automate fini, 1983]

The First-Order theory of every ω -automatic structure is decidable.

Games with ω -automatic preference relations

A game is a tuple $\mathcal{G} = (A, (<_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players.

Games with ω -automatic preference relations

A game is a tuple $\mathcal{G} = (A, (<_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players.

 \sim The previous example becomes $\pi \prec_i \pi'$ if $\Omega_i(\pi') = 1$ and $\Omega_i(\pi) = 0$.

Games with ω -automatic preference relations

A game is a tuple $\mathcal{G} = (A, (<_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players.

 \rightarrow The previous example becomes $\pi \prec_i \pi'$ if $\Omega_i(\pi') = 1$ and $\Omega_i(\pi) = 0$.

Nash equilibria and decisions problems

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ such that

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma \rangle_{v_0} \not\downarrow_i \langle \sigma_{-i}, \tau_i \rangle_{v_0}.$

Nash equilibria and decisions problems

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in P}$ such that

$$\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma \rangle_{v_0} \not\downarrow_i \langle \sigma_{-i}, \tau_i \rangle_{v_0}.$$

Decision problems for games with ω -automatic strict partial orders:

- (NE existence) Does there exist an NE σ ?
- (Constrained NE existence) Given some threshold lassoes $(\rho_i)_{i \in \mathcal{P}}$, does there exist an NE σ such that $\rho_i \prec_i \langle \sigma \rangle_{\nu_0}$?
- (NE checking) Given finite-memory strategies $(\sigma_i)_{i \in \mathcal{P}}$, do they form an NE?
- (NE outcome checking) Given a lasso π , is it an NE outcome?

NE existence problem

Does there always exist a Nash Equilibrium?

NE existence problem

Does there always exist a Nash Equilibrium?

No. We can encode "reachability as late as possible":

NE existence problem

Does there always exist a Nash Equilibrium?

No. We can encode "reachability as late as possible":

Results

	NE Existence	Constrained NE Existence
No restriction	2EXPTIME	2EXPTIME
$ \mathcal{P} $ fixed	EXPTIME	-
$ \mathcal{P} $ and d_i fixed ²	-	EXPTIME
$ \mathcal{P} = 1$	PSPACE-complete	PSPACE-complete

In case of existence: finite-memory strategies!

²Parity acceptance max range

Results

	NE Existence	Constrained NE Existence
No restriction	2EXPTIME	2EXPTIME
$ \mathcal{P} $ fixed	EXPTIME	-
$ \mathcal{P} $ and d_i fixed ²	-	EXPTIME
$ \mathcal{P} = 1$	PSPACE-complete	PSPACE-complete

In case of existence: finite-memory strategies!

Theorem (NE (Outcome) Checking)

- The NE checking problem is PSPACE-complete.
- \bullet The NE outcome checking problem is in NP \cap coNP and Parity-hard.

Solve a zero-sum game.³

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025.

Solve a zero-sum game.³

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025.

Solve a zero-sum game.³

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025.

Solve a zero-sum game.³

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025.

Solve a zero-sum game.³

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025.

Solve a zero-sum game.³

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025.

Solve a zero-sum game.³

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025.

Solve a zero-sum game.³

 $\exists \sigma_{\mathbb{P}'' | \mathsf{left}''} \ \forall \sigma_{\mathbb{C}} \ \exists \sigma_{\mathbb{P} \ \mathsf{''right''}}, \ \mathbb{P} \mathsf{wins}.$

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025.

Solve a three-player "zero-sum" game with imperfect information.³

 $\exists \sigma_{\mathbb{P}_1} \ \forall \sigma_{\mathbb{C}} \ \exists \sigma_{\mathbb{P}_2}, \ \mathbb{P}_1 \ \mathsf{and} \ \mathbb{P}_2 \ \mathsf{win}$

$\mathbb{P}_1\mathbb{CP}_2$ game with imperfect information on $\mathbb{P}_1!$

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025.

$$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i \quad \text{(for } L_i \text{ and } R_i \text{ } \omega\text{-regular)}$$

⁴Bergsträßer, Ganardi, *Revisiting Membership Problems in Subclasses of Rational Relations*, LICS 2023

⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023

⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023

⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023

⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023

⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023

⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023

$$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i \quad \text{(for } L_i \text{ and } R_i \text{ ω-regular)}$$

⁴Bergsträßer, Ganardi, *Revisiting Membership Problems in Subclasses of Rational Relations*, LICS 2023

$$\exists k \in \mathbb{N}, \quad <= \bigcup_{i=1}^{k} L_i \times R_i \quad (\text{for } L_i \text{ and } R_i \text{ ω-regular})$$

⁴Bergsträßer, Ganardi, *Revisiting Membership Problems in Subclasses of Rational Relations*, LICS 2023

$$\exists k \in \mathbb{N}, \quad \prec = \bigcup_{i=1}^{k} L_i \times R_i$$
 (for L_i and R_i ω -regular)

⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023

$$\exists k \in \mathbb{N}, \quad \prec = \bigcup_{i=1}^{k} L_i \times R_i$$
 (for L_i and R_i ω -regular)

⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023

$$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i$$
 (for L_i and R_i ω -regular)

⁴Bergsträßer, Ganardi, *Revisiting Membership Problems in Subclasses of Rational Relations*, LICS 2023

$$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i$$
 (for L_i and R_i ω -regular)

⁴Bergsträßer, Ganardi, *Revisiting Membership Problems in Subclasses of Rational Relations*, LICS 2023

A relation \prec is ω -recognizable if:

$$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i$$
 (for L_i and R_i ω -regular)

$$\begin{array}{|c|c|c|c|}\hline \mathcal{A} & \hline & a & a & c & a & d & b & \cdots \\ \hline \hline & c & a & b & c & b & d & \cdots \\ \hline \end{array}$$

 ω -Recognizable Relations $\subsetneq \omega$ -Automatic Relations

⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023

A relation \prec is ω -recognizable if:

$$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i \quad \text{(for } L_i \text{ and } R_i \text{ } \omega\text{-regular)}$$

 ω -Recognizable Relations $\subsetneq \omega$ -Automatic Relations

⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023

ω -Recognizable Preorder

When \lesssim is a preorder, x and y are equivalent, $x \sim y$, if $x \lesssim y$ and $y \lesssim x$.

Corollary of [Löding, Spinrath, 2019]

An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite index.

ω -Recognizable Preorder

When \lesssim is a preorder, x and y are equivalent, $x \sim y$, if $x \lesssim y$ and $y \lesssim x$.

Corollary of [Löding, Spinrath, 2019]

An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite index.

Theorem (Existence of NE with ω -recognizable preference relations)

There exists a Nash Equilibrium in every game with ω -recognizable preorders (resp. strict weak orders).

Follows ideas of [Ummels, *The Complexity of Nash Equilibria in Infinite Multiplayer Games*, 2008].

ω -Recognizable Preorder

When \lesssim is a preorder, x and y are equivalent, $x \sim y$, if $x \lesssim y$ and $y \lesssim x$.

Corollary of [Löding, Spinrath, 2019]

An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite index.

Theorem (Existence of NE with ω -recognizable preference relations)

There exists a Nash Equilibrium in every game with ω -recognizable preorders (resp. strict weak orders).

Follows ideas of [Ummels, *The Complexity of Nash Equilibria in Infinite Multiplayer Games*, 2008].

Thank you! Questions?