Games with ω -Automatic Preference Relations 50th MFCS, Warsaw, Poland Véronique Bruyère Christophe Grandmont Jean-François Raskin August 25, 2025 #### Reactive systems Continuous interactions between multiple independent agents with their own interests. #### Reactive systems Continuous interactions between multiple independent agents with their own interests. - Objectives are neither fully aligned nor entirely antagonistic. - It enables the study of rational behavior of agents. #### Reactive systems Continuous interactions between multiple independent agents with their own interests. - Objectives are neither fully aligned nor entirely antagonistic. - It enables the study of rational behavior of agents. - → Study this rationality, ensure some specification under rational assumptions. → How to model these interactions? → Model interactions with games played on graphs. → Model interactions with games played on graphs. Directed graph: (V, E)Set of players: $\mathcal{P} = \{1, \dots, n\}$ Arena $A = (V, E, \mathcal{P}, (V_i)_{\in \mathcal{P}})$ Partition of $V: (V_i)_{i \in \mathcal{P}}$ → Model interactions with games played on graphs. Directed graph: $$(V, E)$$ Set of players: $\mathcal{P} = \{1, \dots, n\}$ Arena $A = (V, E, \mathcal{P}, (V_i)_{\in \mathcal{P}})$ Partition of $V: (V_i)_{i \in \mathcal{P}}$ - Play: $\pi \in \text{Plays} \subseteq V^{\omega}$ consistent with E, history: $h \in V^*$, - Strategy for $i \in \mathcal{P}$: function $\sigma_i : V^*V_i \to V$, $hv \mapsto \sigma_i(hv)$. ## Example - Games played on graphs #### Define the following goals: - player \circ wants to visit v_1 at least once, - player \diamond wants to visit v_2 infinitely often. # Example - Games played on graphs #### Define the following goals: - player \circ wants to visit v_1 at least once, - player ◊ wants to visit v₂ infinitely often. Can players ensure their goals? # Example - Games played on graphs #### Define the following goals: - player \circ wants to visit v_1 at least once, - player ◊ wants to visit v₂ infinitely often. Can players ensure their goals? No. A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e., $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$ A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e., $\forall i \in \mathcal{P}, \forall \tau_i$ stategy of player $i, \langle \sigma_{-i}, \tau_i \rangle_{v_0}$ is not better than $\langle \sigma \rangle_{v_0}$ for i. - player wants to visit v₁, - player \diamond wants to visit v_2 inf. often. A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e., $\forall i \in \mathcal{P}, \forall \tau_i$ stategy of player $i, \langle \sigma_{-i}, \tau_i \rangle_{v_0}$ is not better than $\langle \sigma \rangle_{v_0}$ for i. Do there exist NEs from v_0 ? - player wants to visit v₁, - player \diamond wants to visit v_2 inf. often. A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e., $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$ #### Do there exist NEs from v_0 ? 1) $$\sigma_{\diamond}(hv_3) = v_0$$, $\sigma_{\circ}(hv_0) = v_3$. - player \circ wants to visit v_1 , - player \diamond wants to visit v_2 inf. often. A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e., $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$ #### Do there exist NEs from v_0 ? - 1) $\sigma_{\diamond}(hv_3) = v_0$, $\sigma_{\circ}(hv_0) = v_3$. - 2) $\sigma'_{\diamond}(hv_3) = v_1$, $\sigma'_{\diamond}(hv_0) = v_2$ if v_1 in h, else v_3 . - player wants to visit v₁, - player \diamond wants to visit v_2 inf. often. A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e., $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$ - player ∘ wants to visit v₁, - player \diamond wants to visit v_2 inf. often. #### Do there exist NEs from v_0 ? - 1) $\sigma_{\diamond}(hv_3) = v_0$, $\sigma_{\circ}(hv_0) = v_3$. - 2) $\sigma'_{\diamond}(hv_3) = v_1$, $\sigma'_{\diamond}(hv_0) = v_2$ if v_1 in h, else v_3 . NE 2) is strictly better than NE 1) for both players. ### Broader objectives Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$. What if we take more complex objectives for both players? Study NEs in all cases? ¹See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games. ### Broader objectives Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$. What if we take more complex objectives for both players? Study NEs in all cases? Broader setting: "preference relations" $\prec_i \subseteq V^\omega \times V^\omega$ to compare plays.¹ ¹See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games. ### Broader objectives Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$. What if we take more complex objectives for both players? Study NEs in all cases? Broader setting: "preference relations" $\prec_i \subseteq V^{\omega} \times V^{\omega}$ to compare plays.¹ ¹See, e.g., Bouyer et al., *Nash Equilibria for Reachability Objectives in Multi-player Timed Games*, or Pauly, Le Roux, *Equilibria in multi-player multi-outcome infinite sequential games*. ## Properties of preference relations ## Properties of preference relations #### Usual properties • Reflexivity: $\forall x, x < x$, • Irreflexivity: $\forall x, x \neq x$, • Transitivity: $\forall x, y, z, x < y \land y < z \Rightarrow x < z$, • Totality: $\forall x, y, x \neq y \Rightarrow x < y \lor y < x$, • ... ## Properties of preference relations #### Usual properties - Reflexivity: $\forall x, x < x$, - Irreflexivity: $\forall x, x \not\nmid x$, - Transitivity: $\forall x, y, z, x < y \land y < z \Rightarrow x < z$, - Totality: $\forall x, y, x \neq y \Rightarrow x < y \lor y < x$, - ... We expect < to have an order structure; - strict partial order (irreflexive, transitive), - or **preorder** (reflexive, transitive). \sim Define < with a deterministic parity automaton (DPA) on $V \times V$ that synchronously reads two ω -words. $\mathcal{L}(\mathcal{A}) \subseteq V^{\omega} \times V^{\omega}$ can be seen as a binary relation: ω -Automatic Relation! Can we check whether < is a strict partial order? Can we check whether < is a strict partial order? #### Proposition Deciding whether an ω -automatic relation < defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NLOGSPACE-complete. Can we check whether < is a strict partial order? #### Proposition Deciding whether an ω -automatic relation \prec defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NLOGSPACE-complete. Such a structure (V^{ω}, \prec) captured by ω -automata is called ω -automatic. Can we check whether < is a strict partial order? #### Proposition Deciding whether an ω -automatic relation < defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NLOGSPACE-complete. Such a structure (V^{ω}, \prec) captured by ω -automata is called ω -automatic. Theorem [B. R. Hodgson, Décidabilité par automate fini, 1983] The First-Order theory of every ω -automatic structure is decidable. ### Games with ω -automatic preference relations A game is a tuple $\mathcal{G} = (A, (<_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players. ## Games with ω -automatic preference relations A game is a tuple $\mathcal{G} = (A, (<_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players. \sim The previous example becomes $\pi \prec_i \pi'$ if $\Omega_i(\pi') = 1$ and $\Omega_i(\pi) = 0$. ## Games with ω -automatic preference relations A game is a tuple $\mathcal{G} = (A, (<_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players. \rightarrow The previous example becomes $\pi \prec_i \pi'$ if $\Omega_i(\pi') = 1$ and $\Omega_i(\pi) = 0$. # Nash equilibria and decisions problems A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ such that $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma \rangle_{v_0} \not\downarrow_i \langle \sigma_{-i}, \tau_i \rangle_{v_0}.$ # Nash equilibria and decisions problems A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in P}$ such that $$\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma \rangle_{v_0} \not\downarrow_i \langle \sigma_{-i}, \tau_i \rangle_{v_0}.$$ Decision problems for games with ω -automatic strict partial orders: - (NE existence) Does there exist an NE σ ? - (Constrained NE existence) Given some threshold lassoes $(\rho_i)_{i \in \mathcal{P}}$, does there exist an NE σ such that $\rho_i \prec_i \langle \sigma \rangle_{\nu_0}$? - (NE checking) Given finite-memory strategies $(\sigma_i)_{i \in \mathcal{P}}$, do they form an NE? - (NE outcome checking) Given a lasso π , is it an NE outcome? ## NE existence problem Does there always exist a Nash Equilibrium? ## NE existence problem Does there always exist a Nash Equilibrium? No. We can encode "reachability as late as possible": ## NE existence problem Does there always exist a Nash Equilibrium? No. We can encode "reachability as late as possible": #### Results | | NE Existence | Constrained NE Existence | |--|-----------------|--------------------------| | No restriction | 2EXPTIME | 2EXPTIME | | $ \mathcal{P} $ fixed | EXPTIME | - | | $ \mathcal{P} $ and d_i fixed ² | - | EXPTIME | | $ \mathcal{P} = 1$ | PSPACE-complete | PSPACE-complete | In case of existence: finite-memory strategies! ²Parity acceptance max range #### Results | | NE Existence | Constrained NE Existence | |--|-----------------|--------------------------| | No restriction | 2EXPTIME | 2EXPTIME | | $ \mathcal{P} $ fixed | EXPTIME | - | | $ \mathcal{P} $ and d_i fixed ² | - | EXPTIME | | $ \mathcal{P} = 1$ | PSPACE-complete | PSPACE-complete | In case of existence: finite-memory strategies! #### Theorem (NE (Outcome) Checking) - The NE checking problem is PSPACE-complete. - \bullet The NE outcome checking problem is in NP \cap coNP and Parity-hard. Solve a zero-sum game.³ ³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025. Solve a zero-sum game.³ ³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025. Solve a zero-sum game.³ ³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025. Solve a zero-sum game.³ ³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025. Solve a zero-sum game.³ ³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025. Solve a zero-sum game.³ ³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025. Solve a zero-sum game.³ ³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025. Solve a zero-sum game.³ $\exists \sigma_{\mathbb{P}'' | \mathsf{left}''} \ \forall \sigma_{\mathbb{C}} \ \exists \sigma_{\mathbb{P} \ \mathsf{''right''}}, \ \mathbb{P} \mathsf{wins}.$ ³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025. Solve a three-player "zero-sum" game with imperfect information.³ $\exists \sigma_{\mathbb{P}_1} \ \forall \sigma_{\mathbb{C}} \ \exists \sigma_{\mathbb{P}_2}, \ \mathbb{P}_1 \ \mathsf{and} \ \mathbb{P}_2 \ \mathsf{win}$ #### $\mathbb{P}_1\mathbb{CP}_2$ game with imperfect information on $\mathbb{P}_1!$ ³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-regular Objectives*, CONCUR 2025. $$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i \quad \text{(for } L_i \text{ and } R_i \text{ } \omega\text{-regular)}$$ ⁴Bergsträßer, Ganardi, *Revisiting Membership Problems in Subclasses of Rational Relations*, LICS 2023 ⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023 ⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023 ⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023 ⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023 ⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023 ⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023 $$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i \quad \text{(for } L_i \text{ and } R_i \text{ ω-regular)}$$ ⁴Bergsträßer, Ganardi, *Revisiting Membership Problems in Subclasses of Rational Relations*, LICS 2023 $$\exists k \in \mathbb{N}, \quad <= \bigcup_{i=1}^{k} L_i \times R_i \quad (\text{for } L_i \text{ and } R_i \text{ ω-regular})$$ ⁴Bergsträßer, Ganardi, *Revisiting Membership Problems in Subclasses of Rational Relations*, LICS 2023 $$\exists k \in \mathbb{N}, \quad \prec = \bigcup_{i=1}^{k} L_i \times R_i$$ (for L_i and R_i ω -regular) ⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023 $$\exists k \in \mathbb{N}, \quad \prec = \bigcup_{i=1}^{k} L_i \times R_i$$ (for L_i and R_i ω -regular) ⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023 $$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i$$ (for L_i and R_i ω -regular) ⁴Bergsträßer, Ganardi, *Revisiting Membership Problems in Subclasses of Rational Relations*, LICS 2023 $$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i$$ (for L_i and R_i ω -regular) ⁴Bergsträßer, Ganardi, *Revisiting Membership Problems in Subclasses of Rational Relations*, LICS 2023 A relation \prec is ω -recognizable if: $$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i$$ (for L_i and R_i ω -regular) $$\begin{array}{|c|c|c|c|}\hline \mathcal{A} & \hline & a & a & c & a & d & b & \cdots \\ \hline \hline & c & a & b & c & b & d & \cdots \\ \hline \end{array}$$ ω -Recognizable Relations $\subsetneq \omega$ -Automatic Relations ⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023 A relation \prec is ω -recognizable if: $$\exists k \in \mathbb{N}, \quad < = \bigcup_{i=1}^{k} L_i \times R_i \quad \text{(for } L_i \text{ and } R_i \text{ } \omega\text{-regular)}$$ ω -Recognizable Relations $\subsetneq \omega$ -Automatic Relations ⁴Bergsträßer, Ganardi, Revisiting Membership Problems in Subclasses of Rational Relations, LICS 2023 ## ω -Recognizable Preorder When \lesssim is a preorder, x and y are equivalent, $x \sim y$, if $x \lesssim y$ and $y \lesssim x$. Corollary of [Löding, Spinrath, 2019] An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite index. ## ω -Recognizable Preorder When \lesssim is a preorder, x and y are equivalent, $x \sim y$, if $x \lesssim y$ and $y \lesssim x$. #### Corollary of [Löding, Spinrath, 2019] An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite index. #### Theorem (Existence of NE with ω -recognizable preference relations) There exists a Nash Equilibrium in every game with ω -recognizable preorders (resp. strict weak orders). Follows ideas of [Ummels, *The Complexity of Nash Equilibria in Infinite Multiplayer Games*, 2008]. ## ω -Recognizable Preorder When \lesssim is a preorder, x and y are equivalent, $x \sim y$, if $x \lesssim y$ and $y \lesssim x$. #### Corollary of [Löding, Spinrath, 2019] An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite index. #### Theorem (Existence of NE with ω -recognizable preference relations) There exists a Nash Equilibrium in every game with ω -recognizable preorders (resp. strict weak orders). Follows ideas of [Ummels, *The Complexity of Nash Equilibria in Infinite Multiplayer Games*, 2008]. # Thank you! Questions?