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Reactive systems

Continuous interactions between multiple independent agents with
their own interests.
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Reactive systems

Continuous interactions between multiple independent agents with

their own interests.
@

@ Objectives are neither fully aligned nor entirely antagonistic.

@ It enables the study of rational behavior of agents.

~ Study this rationality, ensure some specification under rational
assumptions.
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Game played on graphs

~ How to model these interactions?
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Game played on graphs

~ Model interactions with games played on graphs.

Vo V2

Vs

v3

va

Directed graph: (V,E)
Set of players: P ={1,...,n}Arena A= (V,E,P,(Vi)ep)
Partition of V: (V;)iep

e Play: m e Plays ¢ V* consistent with E, history: he V*,
e Strategy for i € P: function o;: V*V; - V, hv — g;(hv).
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Example - Games played on graphs

Define the following goals:
@ player o wants to visit v; at least once,

@ player ¢ wants to visit v, infinitely often.
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Vo v3
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Example - Games played on graphs

Define the following goals:
@ player o wants to visit v; at least once,

@ player ¢ wants to visit v, infinitely often.

Vi

Vo v3

Can players ensure their goals?

No.
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Nash Equilibria

A Nash Equilibrium (NE) is a strategy profile o = (0;)jep from which no
player has the incentive to unilaterally deviate, i.e.,

Vie P,V stategy of player i, (o_;,7i), is not better than (o), for i.
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Nash Equilibria

A Nash Equilibrium (NE) is a strategy profile o = (0;);ep from which no
player has the incentive to unilaterally deviate, i.e.,

Vie P,V stategy of player i, (o_j, 7}, is not better than (c),, for /.

Vi

V2

Vo v3

@ player o wants to visit v,

@ player ¢ wants to visit v, inf. often.
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Nash Equilibria

A Nash Equilibrium (NE) is a strategy profile o = (0;);ep from which no
player has the incentive to unilaterally deviate, i.e.,

Vie P,V stategy of player i, (o_j, 7}, is not better than (c),, for /.

Vi Do there exist NEs from v,?

~r 0'<>(hV3) =\, O’o(hVo) = V3.
V2
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Nash Equilibria

A Nash Equilibrium (NE) is a strategy profile o = (0;);ep from which no
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Nash Equilibria

A Nash Equilibrium (NE) is a strategy profile o = (0;);ep from which no
player has the incentive to unilaterally deviate, i.e.,

Vie P,V stategy of player i, (o_j, 7}, is not better than (c),, for /.

Vi Do there exist NEs from v,?
~ O'<>(hV3) =\, O'o(hVo) = V3.
2 ~ o4 (hv3) = vi, o6(hw) = va if v

in h, else vs.
Vo V3

Note: (o'}, is better than (o),
e player o wants to visit vy, for both players.
@ player ¢ wants to visit v, inf. often.
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Broader objectives

Classical setting: objectives ; : Plays - Q.
vi
What if we take more complex objectives for
v both players?
Study NEs in all cases?

Vo v3

1See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed
Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games.
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Broader objectives

Classical setting: objectives ; : Plays - Q.
vi
What if we take more complex objectives for
v both players?
Study NEs in all cases?

Vo v3

Broader setting: “preference relations” <; ¢ V¥ x V¥ to compare plays.!

{m e Plays | Q;(w) =0}

1See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed
Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games.
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Broader objectives

Classical setting: objectives ; : Plays - Q.
vi
What if we take more complex objectives for
v both players?
Study NEs in all cases?
Vo v3

Broader setting: “preference relations” <; ¢ V¥ x V¥ to compare plays.!

{1,22,Q3}

TN

{1, 2} {,Q3} {2, Q3}

> 2K

{1} {22} {93}

{m € Plays | Q;(7) = 0} \@/

1See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed
Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games.
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Properties of preference relations
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Properties of preference relations

Smssors
beats paper
@ Usual properties

Reflexivity: Vx, x < x,

‘,@“’;go‘é
A
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Irreflexivity: Vx, x £ x,

°
@ o Transitivity: Vx,y,z, X< yAy<z=x< Z,

o Totality: Vx,y, x#y =>x<yVy<x,

°

{1,2,3}

{2,3} {1,3} {1,2}
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Properties of preference relations

Smssors
beats paper
@ Usual properties

Reflexivity: Vx, x < x,

o Irreflexivity: Vx, x £ x,
o Transitivity: Vx,y,z, X< yAy<z=x< Z,
o Totality: Vx,y, x#y =>x<yVy<x,
{1,2,3} e
@ 3}/{1_3}\{12} We expect < to have an order structure;
‘ X \/\ ‘ e strict partial order (irreflexive, transitive),
8} 2 {1} e or preorder (reflexive, transitive).
%}
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Synchronous automata

~ Define < with a deterministic parity automaton (DPA) on V x V that
synchronously reads two w-words.

Christophe Grandmont May 13, 2025



Synchronous automata

~ Define < with a deterministic parity automaton (DPA) on V x V that
synchronously reads two w-words.

>
clalb|c|b|d

L
L
(o)
Q.
o

Christophe Grandmont May 13, 2025



Synchronous automata

~ Define < with a deterministic parity automaton (DPA) on V x V that
synchronously reads two w-words.

a a
clalb|c|b|d

L
(o)

Q.
o

Christophe Grandmont May 13, 2025



Synchronous automata

~ Define < with a deterministic parity automaton (DPA) on V x V that
synchronously reads two w-words.

a a
c|a

(9}
Q.
(o n

oy
o
Q

Christophe Grandmont May 13, 2025



Synchronous automata

~ Define < with a deterministic parity automaton (DPA) on V x V that
synchronously reads two w-words.

clalblc|b|d

Christophe Grandmont May 13, 2025



Synchronous automata

~ Define < with a deterministic parity automaton (DPA) on V x V that
synchronously reads two w-words.

alalc|a b
clalblc|b]ld

Q.

Christophe Grandmont May 13, 2025



Synchronous automata

~ Define < with a deterministic parity automaton (DPA) on V x V that
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Synchronous automata

~ Define < with a deterministic parity automaton (DPA) on V x V that
synchronously reads two w-words.

cla|blc|b|d

L(A) € V¥ x V¥ can be seen as a binary relation: w-Automatic Relation!

(o n
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Properties of w-automatic preference relations

Can we check whether < is a strict partial order?
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Properties of w-automatic preference relations

Can we check whether < is a strict partial order?
Proposition

Deciding whether an w-automatic relation < defined by a DPA is reflexive
(resp. irreflexive, transitive, total) is NL-complete.
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Properties of w-automatic preference relations

Can we check whether < is a strict partial order?

Proposition

Deciding whether an w-automatic relation < defined by a DPA is reflexive
(resp. irreflexive, transitive, total) is NL-complete.

Such a structure (V*“, <) captured by w-automata is called w-automatic.

Theorem [B. R. Hodgson, Décidabilité par automate fini, 1983]
The First-Order theory of every w-automatic structure is decidable. J
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Games with w-automatic preference relations

A game is a tuple G = (A, (<;)jep) with w-automatic strict partial
orders for the players.

Vi

V2

Vo v3
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Games with w-automatic preference relations

A game is a tuple G = (A, (<;)jep) with w-automatic strict partial
orders for the players.

vi
~ The previous example becomes
v2 m<; " if Qi(n")=1and Q;(7) =0.
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Games with w-automatic preference relations

A game is a tuple G = (A, (<;)jep) with w-automatic strict partial
orders for the players.

vi
~ The previous example becomes
va m<;m if Qi(7")=1and Q;(7) =0.

Vo v3
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Nash equilibria and decisions problems

A Nash Equilibrium (NE) is a strategy profile o = (¢;);ep such that

Vie P,V stategy of player i, (o), i (0-isTi)vo-
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Nash equilibria and decisions problems

A Nash Equilibrium (NE) is a strategy profile o = (¢;);ep such that

Vie P,V stategy of player i, (o), i (0-isTi)vo-

Decision problems for games with w-automatic strict partial orders:
e (NE existence) Does there exist an NE o7
e (Constrained NE existence) Given some threshold lassoes (p;)iep,
does there exist an NE o such that p; <; (0)y,?
e (NE checking) Given finite memory strategies (o;)jep, do these form
an NE?
e (NE outcome checking) Given a lasso m, is it an NE outcome?
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NE existence problem

Does there always exist a Nash Equilibrium?

Christophe Grandmont
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NE existence problem

Does there always exist a Nash Equilibrium?

No. We can encode “reachability as late as possible™

~2 &

Vo Vi
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NE existence problem

Does there always exist a Nash Equilibrium?

No. We can encode “reachability as late as possible™

Vo, Vo Vo, *

Vo, Vi
—
V07 V1 *7* \LQ

Vo Vi
*, V1
*, Vo
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Results

NE Existence

Constrained NE Existence

No restriction

2EXPTIME

2EXPTIME

|P| fixed

EXPTIME

|P| and d; fixed?

EXPTIME

Pl=1

PSPACE-complete

PSPACE-complete

2Parity acceptance max range

Christophe Grandmont

May 13, 2025

12



Results

NE Existence Constrained NE Existence
No restriction 2EXPTIME 2EXPTIME
[ fixed EXPTIME -
|P| and d; fixed® | - EXPTIME
|P|=1 PSPACE-complete | PSPACE-complete

Theorem (NE (Outcome) Checking)
@ The NE checking problem is PSPACE-complete.
@ The NE outcome checking problem is in NP n coNP and Parity-hard.

2Parity acceptance max range
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Algorithm for the NE Existence Problem

Solve a three-player “zero-sum” game with imperfect information.3

3Bruyére, Raskin, Reynouard, Van Den Bogaard, The Non-Cooperative Rational Synthesis
Problem for Subgame Perfect Equilibria and omega-regular Objectives.
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@ PC game: P creates 7; C can deviate at any time at v e V;}; if so, P
retaliates to show that the deviation 7’ is such that 7 £; 7.
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Algorithm for the NE Existence Problem

Solve a three-player “zero-sum” game with imperfect information.3

@ PC game: P creates 7; C can deviate at any time at v e V}; if so, P
retaliates to show that the deviation 7’ is such that 7 £; 7.

P: v = vg1? { Vi

C: ok / nope. N
V2 P: players P~{i}
Y C: player i
V3 3
P: vk = vis1 Vi
V4 e A
dop. g Voc dop ight" P wins.

3Bruyére, Raskin, Reynouard, Van Den Bogaard, The Non-Cooperative Rational Synthesis
Problem for Subgame Perfect Equilibria and omega-regular Objectives.
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Algorithm for the NE Existence Problem
Solve a three-player “zero-sum” game with imperfect information.3

o P1CP, game: Py creates m; C can deviate at any time at v € V;; if so,
[P, retaliates to show that the deviation 7’ is such that 7 £; 7’.

Pi: vk = vis1? { Vi

(C: k . % .
ok / nope v N P,: players —i
C: player i
v3 v3 P;: blind
Py: vk = vks1 v
V4 R

30[[»1 VO'(C 30[[»2, ]Pl and Pg win

P;CP, game with imperfect information on P!

3Bruyére, Raskin, Reynouard, Van Den Bogaard, The Non-Cooperative Rational Synthesis
Problem for Subgame Perfect Equilibria and omega-regular Objectives.
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w-Recognizable Relations

A relation < is w-recognizable if there exists k € N such that
<= Uf.‘:l Li x R;, for L;, Rj ¢ V¥, w-regular languages.

4Ltiding;, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and
Infinite Words, 2019.
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w-Recognizable Relations

A relation < is w-recognizable if there exists k € N such that
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w-Recognizable Relations

A relation < is w-recognizable if there exists k € N such that
<= Uf.‘:l Li x R;, for L;, Rj ¢ V¥, w-regular languages.

A

w-Recognizable Relations & w-Automatic Relations.

4Ltiding;, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and
Infinite Words, 2019.
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w-Recognizable Relations

A relation < is w-recognizable if there exists k € N such that
<= Uf.‘:l Li x R;, for L;, Rj ¢ V¥, w-regular languages.

A

w-Recognizable Relations & w-Automatic Relations.

We can decide in 2EXPTIME whether an w-automatic relation is
w-recognizable*

4L&Sding;, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and
Infinite Words, 2019.
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w-Recognizable Preorder

When 3 is a preorder, x and y are equivalent, x~ y, if x Sy and y 3 x.
Corollary of [Léding, Spinrath, 2019]

An w-automatic preorder 3 is w-recognizable if and only if its equivalence
relation ~ has a finite number of equivalence classes.

Christophe Grandmont May 13, 2025
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w-Recognizable Preorder

When 3 is a preorder, x and y are equivalent, x~ y, if x Sy and y 3 x.

Corollary of [Léding, Spinrath, 2019]

An w-automatic preorder 3 is w-recognizable if and only if its equivalence
relation ~ has a finite number of equivalence classes.

Theorem (Existence of NE with w-recognizable preference relations)

There exists a Nash Equilibrium in every game with w-recognizable
preorders (resp. strict weak orders).

Follows ideas of [Ummels, The Complexity of Nash Equilibria in Infinite
Multiplayer Games, 2008].
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w-Recognizable Preorder

When 3 is a preorder, x and y are equivalent, x ~ y, if xSy and y 5 x.

Corollary of [Léding, Spinrath, 2019]

An w-automatic preorder 3 is w-recognizable if and only if its equivalence
relation ~ has a finite number of equivalence classes.

Theorem (Existence of NE with w-recognizable preference relations)

There exists a Nash Equilibrium in every game with w-recognizable
preorders (resp. strict weak orders).

Follows ideas of [Ummels, The Complexity of Nash Equilibria in Infinite
Multiplayer Games, 2008].

Thank youl Questions?
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