Games with ω -Automatic Preference Relations GT DAAL 2025

Christophe Grandmont

Joint work with Véronique Bruyère and Jean-François Raskin

< □ > < (四 > < 三 > < 三 >) 三 三

May 13, 2025 Champs-sur-Marne, France

Continuous interactions between multiple **independent agents** with their own interests.

イロト イヨト イヨト

3

Continuous interactions between multiple **independent agents** with their own interests.

- Objectives are neither fully aligned nor entirely antagonistic.
- It enables the study of **rational behavior** of agents.

Continuous interactions between multiple **independent agents** with their own interests.

- Objectives are neither fully aligned nor entirely antagonistic.
- It enables the study of **rational behavior** of agents.

 \rightsquigarrow Study this rationality, ensure some specification under rational assumptions.

Image: A matrix and a matrix

 \rightsquigarrow How to model these interactions?

イロト イヨト イヨト イヨト

2

→ Model interactions with games played on graphs.

3

Image: A math a math

→ Model interactions with games played on graphs.

Directed graph: (V, E)Set of players: $\mathcal{P} = \{1, ..., n\}$ Partition of V: $(V_i)_{i \in \mathcal{P}}$

→ Model interactions with games played on graphs.

Directed graph: (V, E)Set of players: $\mathcal{P} = \{1, ..., n\}$ Partition of V: $(V_i)_{i \in \mathcal{P}}$

• Play: $\pi \in \text{Plays} \subseteq V^{\omega}$ consistent with *E*, history: $h \in V^*$,

• Strategy for $i \in \mathcal{P}$: function $\sigma_i : V^* V_i \to V$, $hv \mapsto \sigma_i(hv)$.

イロト イヨト イヨト イヨト

Example - Games played on graphs

Define the following goals:

- player \circ wants to visit v_1 at least once,
- player \diamond wants to visit v_2 infinitely often.

< 47 ▶

Example - Games played on graphs

Define the following goals:

- player \circ wants to visit v_1 at least once,
- player \diamond wants to visit v_2 infinitely often.

Can players ensure their goals?

Example - Games played on graphs

Define the following goals:

- player \circ wants to visit v_1 at least once,
- player \diamond wants to visit v_2 infinitely often.

Can players ensure their goals?

No.

< 47 ▶

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

- player \circ wants to visit v_1 ,
- player \diamond wants to visit v_2 inf. often.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

Do there exist NEs from v_0 ?

- player \circ wants to visit v_1 ,
- player \diamond wants to visit v_2 inf. often.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

Do there exist NEs from v_0 ? $\Rightarrow \sigma_{\diamond}(hv_3) = v_0, \ \sigma_{\circ}(hv_0) = v_3.$

- player \circ wants to visit v_1 ,
- player \diamond wants to visit v_2 inf. often.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

Do there exist NEs from v_0 ? $\Rightarrow \sigma_{\diamond}(hv_3) = v_0, \ \sigma_{\circ}(hv_0) = v_3.$ $\Rightarrow \sigma'_{\diamond}(hv_3) = v_1, \ \sigma'_{\circ}(hv_0) = v_2 \text{ if } v_1$ in *h*. else v_3 .

- player \circ wants to visit v_1 ,
- player \diamond wants to visit v_2 inf. often.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

- player \circ wants to visit v_1 ,
- player \diamond wants to visit v_2 inf. often.

Do there exist NEs from v_0 ?

$$\Rightarrow \sigma_{\diamond}(hv_3) = v_0, \ \sigma_{\circ}(hv_0) = v_3.$$

$$\Rightarrow \sigma_{\diamond}'(hv_3) = v_1, \ \sigma_{\circ}'(hv_0) = v_2 \text{ if } v_1$$

 in *h*, else *v*₃.

Note: $\langle \sigma' \rangle_{v_0}$ is better than $\langle \sigma \rangle_{v_0}$ for both players.

< □ > < 同 > < 回 > < 回 > < 回 >

Broader objectives

Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$.

What if we take more complex objectives for both players? **Study NEs in all cases?**

¹See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games.

Broader objectives

Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$.

What if we take more complex objectives for both players? **Study NEs in all cases?**

Broader setting: "preference relations" $\prec_i \subseteq V^{\omega} \times V^{\omega}$ to compare plays.¹

¹See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games.

Broader objectives

Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$.

What if we take more complex objectives for both players? **Study NEs in all cases?**

Broader setting: "preference relations" $\prec_i \subseteq V^{\omega} \times V^{\omega}$ to compare plays.¹

¹See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games.

Properties of preference relations

< ∃⇒

э

Properties of preference relations

Usual properties

- Reflexivity: $\forall x, x < x$,
- Irreflexivity: $\forall x, x \neq x$,
- Transitivity: $\forall x, y, z, x \prec y \land y \prec z \Rightarrow x \prec z$,

• Totality: $\forall x, y, x \neq y \Rightarrow x < y \lor y < x$,

• ...

Properties of preference relations

Usual properties

...

- Reflexivity: $\forall x, x < x$,
- Irreflexivity: $\forall x, x \neq x$,
- Transitivity: $\forall x, y, z, x < y \land y < z \Rightarrow x < z$,
- Totality: $\forall x, y, x \neq y \Rightarrow x \prec y \lor y \prec x$,

We expect < to have an order structure;

- strict partial order (irreflexive, transitive),
- or preorder (reflexive, transitive).

3

∃ ⊳

∃ ⊳

∃ ⊳

∃ ⊳

∃ ⊳

 $\mathcal{L}(\mathcal{A}) \subseteq V^{\omega} \times V^{\omega}$ can be seen as a binary relation: ω -Automatic Relation!

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Properties of ω -automatic preference relations

Can we check whether < is a strict partial order?

∃ ⊳

Properties of ω -automatic preference relations

Can we check whether < is a strict partial order?

Proposition

Deciding whether an ω -automatic relation < defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NL-complete.

Can we check whether < is a strict partial order?

Proposition

Deciding whether an ω -automatic relation \prec defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NL-complete.

Such a structure (V^{ω}, \prec) captured by ω -automata is called ω -automatic.

Can we check whether < is a strict partial order?

Proposition

Deciding whether an ω -automatic relation \prec defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NL-complete.

Such a structure (V^{ω},\prec) captured by ω -automata is called ω -automatic.

Theorem [B. R. Hodgson, Décidabilité par automate fini, 1983]

The First-Order theory of every ω -automatic structure is decidable.

A D N A B N A B N A B N

Games with ω -automatic preference relations

A game is a tuple $\mathcal{G} = (A, (\prec_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players.

Games with ω -automatic preference relations

A game is a tuple $\mathcal{G} = (A, (\prec_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players.

→ The previous example becomes
$$\pi \prec_i \pi'$$
 if $\Omega_i(\pi') = 1$ and $\Omega_i(\pi) = 0$.

Games with ω -automatic preference relations

A game is a tuple $\mathcal{G} = (A, (\prec_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players.

∼ The previous example becomes
$$\pi \prec_i \pi'$$
 if $\Omega_i(\pi') = 1$ and $\Omega_i(\pi) = 0$.

< 47 ▶

Nash equilibria and decisions problems

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ such that

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma \rangle_{v_0} \neq_i \langle \sigma_{-i}, \tau_i \rangle_{v_0}.$

< □ > < 同 > < 回 > < 回 > < 回 >

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ such that

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma \rangle_{\nu_0} \neq_i \langle \sigma_{-i}, \tau_i \rangle_{\nu_0}.$

Decision problems for games with ω -automatic strict partial orders:

- (NE existence) Does there exist an NE σ ?
- (Constrained NE existence) Given some threshold lassoes $(\rho_i)_{i \in \mathcal{P}}$, does there exist an NE σ such that $\rho_i \prec_i \langle \sigma \rangle_{v_0}$?
- (NE checking) Given finite memory strategies (σ_i)_{i∈P}, do these form an NE?
- (NE outcome checking) Given a lasso π , is it an NE outcome?

< ロ > < 同 > < 三 > < 三 > <

Does there always exist a Nash Equilibrium?

イロト イヨト イヨト イヨト

э

Does there **always** exist a Nash Equilibrium?

No. We can encode "reachability as late as possible":

Christophe Grandmont

∃ ⊳

Does there always exist a Nash Equilibrium?

No. We can encode "reachability as late as possible":

Image: Image:

∃ >

Results

	NE Existence	Constrained NE Existence
No restriction	2EXPTIME	2EXPTIME
$ \mathcal{P} $ fixed	EXPTIME	-
$ \mathcal{P} $ and d_i fixed ²	-	EXPTIME
$ \mathcal{P} = 1$	PSPACE-complete	PSPACE-complete

²Parity acceptance max range

12

Results

	NE Existence	Constrained NE Existence
No restriction	2EXPTIME	2EXPTIME
$ \mathcal{P} $ fixed	EXPTIME	-
$ \mathcal{P} $ and d_i fixed ²	-	EXPTIME
$ \mathcal{P} = 1$	PSPACE-complete	PSPACE-complete

Theorem (NE (Outcome) Checking)

- The NE checking problem is PSPACE-complete.
- $\bullet\,$ The NE outcome checking problem is in NP $\cap\,$ coNP and Parity-hard.

< ∃⇒

Image: A matrix and a matrix

Solve a three-player "zero-sum" game with imperfect information.³

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis* Problem for Subgame Perfect Equilibria and omega-regular Objectives.

Solve a three-player "zero-sum" game with imperfect information.³

• \mathbb{PC} game: \mathbb{P} creates π ; \mathbb{C} can deviate at any time at $v \in V_i$; if so, \mathbb{P} retaliates to show that the deviation π' is such that $\pi \neq_i \pi'$.

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis* Problem for Subgame Perfect Equilibria and omega-regular Objectives.

Solve a three-player "zero-sum" game with imperfect information.³

• \mathbb{PC} game: \mathbb{P} creates π ; \mathbb{C} can deviate at any time at $v \in V_i$; if so, \mathbb{P} retaliates to show that the deviation π' is such that $\pi \neq_i \pi'$.

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis* Problem for Subgame Perfect Equilibria and omega-regular Objectives.

Solve a three-player "zero-sum" game with imperfect information.³

• $\mathbb{P}_1 \mathbb{CP}_2$ game: \mathbb{P}_1 creates π ; \mathbb{C} can deviate at any time at $v \in V_i$; if so, \mathbb{P}_2 retaliates to show that the deviation π' is such that $\pi \neq_i \pi'$.

 $\exists \sigma_{\mathbb{P}_1} \ \forall \sigma_{\mathbb{C}} \ \exists \sigma_{\mathbb{P}_2}, \ \mathbb{P}_1 \text{ and } \mathbb{P}_2 \text{ win}$

$\mathbb{P}_1\mathbb{CP}_2$ game with imperfect information on \mathbb{P}_1 !

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis* Problem for Subgame Perfect Equilibria and omega-regular Objectives.

ω -Recognizable Relations

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

 ω -Recognizable Relations $\subsetneq \omega$ -Automatic Relations.

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

A relation \prec is ω -recognizable if there exists $k \in \mathbb{N}$ such that $\prec = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

 ω -Recognizable Relations $\subsetneq \omega$ -Automatic Relations.

We can decide in 2EXPTIME whether an $\omega\textsc{-}automatic relation is <math display="inline">\omega\textsc{-}recognizable^4$

⁴Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words, 2019.

ω -Recognizable Preorder

When \leq is a preorder, x and y are **equivalent**, $x \sim y$, if $x \leq y$ and $y \leq x$.

Corollary of [Löding, Spinrath, 2019]

An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite number of equivalence classes.

15

ω -Recognizable Preorder

When \leq is a preorder, x and y are **equivalent**, $x \sim y$, if $x \leq y$ and $y \leq x$.

Corollary of [Löding, Spinrath, 2019]

An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite number of equivalence classes.

Theorem (Existence of NE with ω -recognizable preference relations) There exists a Nash Equilibrium in every game with ω -recognizable preorders (resp. strict weak orders).

Follows ideas of [Ummels, *The Complexity of Nash Equilibria in Infinite Multiplayer Games*, 2008].

< □ > < 同 > < 回 > < 回 > < 回 >

ω -Recognizable Preorder

When \leq is a preorder, x and y are **equivalent**, $x \sim y$, if $x \leq y$ and $y \leq x$.

Corollary of [Löding, Spinrath, 2019]

An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite number of equivalence classes.

Theorem (Existence of NE with ω -recognizable preference relations) There exists a Nash Equilibrium in every game with ω -recognizable preorders (resp. strict weak orders).

Follows ideas of [Ummels, *The Complexity of Nash Equilibria in Infinite Multiplayer Games*, 2008].

Thank you! Questions?