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Reactive systems

Continuous interactions between multiple independent agents with
their own interests.

Objectives are neither fully aligned nor entirely antagonistic.
It enables the study of rational behavior of agents.

↝ Study this rationality, ensure some specification under rational
assumptions.
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Game played on graphs

↝ How to model these interactions?

v0

v1

v2

v3

v4

v5

Directed graph: (V ,E)
Set of players: P = {1, . . . ,n}
Partition of V : (Vi)i∈P

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Arena A = (V ,E ,P, (Vi)∈P)

Play: π ∈ Plays ⊆ V ω consistent with E , history: h ∈ V ∗,
Strategy for i ∈ P: function σi ∶ V ∗Vi → V , hv ↦ σi(hv).
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Example - Games played on graphs

Define the following goals:
player ○ wants to visit v1 at least once,
player ◇ wants to visit v2 infinitely often.

v0

v1

v2

v3

Can players ensure their goals?

No.

Christophe Grandmont May 13, 2025 3



Example - Games played on graphs

Define the following goals:
player ○ wants to visit v1 at least once,
player ◇ wants to visit v2 infinitely often.

v0

v1

v2

v3

Can players ensure their goals?

No.

Christophe Grandmont May 13, 2025 3



Example - Games played on graphs

Define the following goals:
player ○ wants to visit v1 at least once,
player ◇ wants to visit v2 infinitely often.

v0

v1

v2

v3

Can players ensure their goals?

No.

Christophe Grandmont May 13, 2025 3



Nash Equilibria

A Nash Equilibrium (NE) is a strategy profile σ = (σi)i∈P from which no
player has the incentive to unilaterally deviate, i.e.,

∀i ∈ P,∀τi stategy of player i , ⟨σ−i , τi ⟩v0 is not better than ⟨σ⟩v0 for i .

1

(σ1, ..., σn)

σ2

⟨σ⟩v0
⟨τ1, σ2, . . . , σt⟩v0

τ1

σ3
...

σn
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v0

v1

v2

v3

player ○ wants to visit v1,
player ◇ wants to visit v2 inf. often.

Do there exist NEs from v0?

↝ σ◇(hv3) = v0, σ○(hv0) = v3.
↝ σ′
◇
(hv3) = v1, σ′○(hv0) = v2 if v1

in h, else v3.

Note: ⟨σ′⟩v0 is better than ⟨σ⟩v0
for both players.
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Broader objectives

Classical setting: objectives Ωi ∶ Plays→ Q.

v0

v1

v2

v3

What if we take more complex objectives for
both players?
Study NEs in all cases?

Broader setting: “preference relations” ≺i ⊆ V ω ×V ω to compare plays.1

{π ∈ Plays ∣ Ωi(π) = 1}

{π ∈ Plays ∣ Ωi(π) = 0}

{Ω1,Ω2,Ω3}

{Ω1,Ω2} {Ω1,Ω3} {Ω2,Ω3}

{Ω1} {Ω2} {Ω3}

∅

1See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed
Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games.
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Properties of preference relations

{1,2,3}

{2,3} {1,3} {1,2}

{3} {2} {1}

∅

Usual properties
Reflexivity: ∀x , x ≺ x ,
Irreflexivity: ∀x , x /≺ x ,
Transitivity: ∀x , y , z , x ≺ y ∧ y ≺ z ⇒ x ≺ z ,
Totality: ∀x , y , x ≠ y ⇒ x ≺ y ∨ y ≺ x ,
...

We expect ≺ to have an order structure;
strict partial order (irreflexive, transitive),
or preorder (reflexive, transitive).
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Synchronous automata

↝ Define ≺ with a deterministic parity automaton (DPA) on V ×V that
synchronously reads two ω-words.

A a a

a

a

c c

c

b b

d

d

b ...

L(A) ⊆ V ω ×V ω can be seen as a binary relation: ω-Automatic Relation!
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Properties of ω-automatic preference relations

Can we check whether ≺ is a strict partial order?

Proposition
Deciding whether an ω-automatic relation ≺ defined by a DPA is reflexive
(resp. irreflexive, transitive, total) is NL-complete.

Such a structure (V ω,≺) captured by ω-automata is called ω-automatic.

Theorem [B. R. Hodgson, Décidabilité par automate fini, 1983]

The First-Order theory of every ω-automatic structure is decidable.

Christophe Grandmont May 13, 2025 8
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Games with ω-automatic preference relations

A game is a tuple G = (A, (≺i)i∈P) with ω-automatic strict partial
orders for the players.

v0

v1

v2

v3

↝ The previous example becomes
π ≺i π′ if Ωi(π′) = 1 and Ωi(π) = 0.

1 0
¬v1, v1

¬v1,¬v1 ¬v1,∗ 1 3

2

v2,∗

¬v2 , v2

¬v2,¬v2

¬v2 ,¬v2
v 2
,∗

¬v2, v2

¬v2,¬v2

¬v 2
, v 2

v2,∗
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Nash equilibria and decisions problems

A Nash Equilibrium (NE) is a strategy profile σ = (σi)i∈P such that

∀i ∈ P,∀τi stategy of player i , ⟨σ⟩v0 /≺i ⟨σ−i , τi ⟩v0 .

Decision problems for games with ω-automatic strict partial orders:
(NE existence) Does there exist an NE σ?
(Constrained NE existence) Given some threshold lassoes (ρi)i∈P ,
does there exist an NE σ such that ρi ≺i ⟨σ⟩v0?
(NE checking) Given finite memory strategies (σi)i∈P , do these form
an NE?
(NE outcome checking) Given a lasso π, is it an NE outcome?

Christophe Grandmont May 13, 2025 10
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NE existence problem

Does there always exist a Nash Equilibrium?

No. We can encode “reachability as late as possible”:

1

1 0

0

v0, v1

v0, v1

v0, v0

∗, v0
∗, v1

∗,∗

v0,∗

v0 v1

vω0

⋮

v0v
ω
1

(v0)2vω1
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Results

NE Existence Constrained NE Existence
No restriction 2EXPTIME 2EXPTIME
∣P∣ fixed EXPTIME -
∣P∣ and di fixed2 - EXPTIME
∣P∣ = 1 PSPACE-complete PSPACE-complete

Theorem (NE (Outcome) Checking)

The NE checking problem is PSPACE-complete.
The NE outcome checking problem is in NP ∩ coNP and Parity-hard.

2Parity acceptance max range
Christophe Grandmont May 13, 2025 12
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Algorithm for the NE Existence Problem

Solve a three-player “zero-sum” game with imperfect information.3

PC game: P creates π; C can deviate at any time at v ∈ Vi ; if so, P
retaliates to show that the deviation π′ is such that π /≺i π′.

i

π π′/≺

τi

∃σP“left” ∀σC ∃σP “right” , P wins.

3Bruyère, Raskin, Reynouard, Van Den Bogaard, The Non-Cooperative Rational Synthesis
Problem for Subgame Perfect Equilibria and omega-regular Objectives.
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PC game: P creates π; C can deviate at any time at v ∈ Vi ; if so, P
retaliates to show that the deviation π′ is such that π /≺i π′.

v1

v2

v3

v4

v ′3

v ′4

´¹¹¹¹¹¹
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
¹¹¹¸
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
¹¹¹¹¹¹¹¹¹¹¶ P: players P∖{i}

C: player i

P2: players −i
C: player i
P1: blind

´¹¹¹¹¹¹¹¸
¹¹¹¹¹¹¹¹¶

P: vk → vk+1?
C: ok / nope.
P1: vk → vk+1?
C: ok / nope.

´¹¹¹¹¹¹¹¸
¹¹¹¹¹¹¹¹¶

P: vk → vk+1P1: vk → vk+1

∈
V i

∃σP“left” ∀σC ∃σP “right” , P wins.
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Algorithm for the NE Existence Problem

Solve a three-player “zero-sum” game with imperfect information.3

P1CP2 game: P1 creates π; C can deviate at any time at v ∈ Vi ; if so,
P2 retaliates to show that the deviation π′ is such that π /≺i π′.

v1

v2

v3

v4

v ′3

v ′4

´¹¹¹¹¹¹
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
¹¹¹¸
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
¹¹¹¹¹¹¹¹¹¹¶ P: players P∖{i}

C: player i

P2: players −i
C: player i
P1: blind

´¹¹¹¹¹¹¹¸
¹¹¹¹¹¹¹¹¶

P: vk → vk+1?
C: ok / nope.
P1: vk → vk+1?
C: ok / nope.

´¹¹¹¹¹¹¹¸
¹¹¹¹¹¹¹¹¶

P: vk → vk+1P1: vk → vk+1

∈
V i

∃σP1 ∀σC ∃σP2 , P1 and P2 win

P1CP2 game with imperfect information on P1!
3Bruyère, Raskin, Reynouard, Van Den Bogaard, The Non-Cooperative Rational Synthesis

Problem for Subgame Perfect Equilibria and omega-regular Objectives.
Christophe Grandmont May 13, 2025 13



ω-Recognizable Relations

A relation ≺ is ω-recognizable if there exists k ∈ N such that
≺ = ⋃k

i=1 Li × Ri , for Li ,Ri ⊆ V ω, ω-regular languages.

A a ...

ac cb b d ...

a ac d b

ω-Recognizable Relations ⫋ ω-Automatic Relations.

We can decide in 2EXPTIME whether an ω-automatic relation is
ω-recognizable4

4Löding, Spinrath, Decision Problems for Subclasses of Rational Relations over Finite and
Infinite Words, 2019.
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ω-Recognizable Preorder

When ≾ is a preorder, x and y are equivalent, x ∼ y , if x ≾ y and y ≾ x .

Corollary of [Löding, Spinrath, 2019]

An ω-automatic preorder ≾ is ω-recognizable if and only if its equivalence
relation ∼ has a finite number of equivalence classes.

Theorem (Existence of NE with ω-recognizable preference relations)

There exists a Nash Equilibrium in every game with ω-recognizable
preorders (resp. strict weak orders).

Follows ideas of [Ummels, The Complexity of Nash Equilibria in Infinite
Multiplayer Games, 2008].

Thank you! Questions?
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