Games with ω -Automatic Preference Relations CFV

Christophe Grandmont

Joint work with Véronique Bruyère and Jean-François Raskin

May 16, 2025 Bruxelles, Belgium

Reactive systems

Continuous interactions between multiple independent agents with their own interests.

Reactive systems

Continuous interactions between multiple independent agents with their own interests.

- Objectives are neither fully aligned nor entirely antagonistic.
- It enables the study of rational behavior of agents.

Reactive systems

Continuous interactions between multiple independent agents with their own interests.

- Objectives are neither fully aligned nor entirely antagonistic.
- It enables the study of rational behavior of agents.
- → Study this rationality, ensure some specification under rational assumptions.

→ How to model these interactions?

→ Model interactions with games played on graphs.

→ Model interactions with games played on graphs.

Directed graph: (V, E)Set of players: $\mathcal{P} = \{1, \dots, n\}$ Arena $A = (V, E, \mathcal{P}, (V_i)_{\in \mathcal{P}})$ Partition of $V: (V_i)_{i \in \mathcal{P}}$

Christophe Grandmont

→ Model interactions with games played on graphs.

Directed graph:
$$(V, E)$$

Set of players: $\mathcal{P} = \{1, \dots, n\}$ Arena $A = (V, E, \mathcal{P}, (V_i)_{\in \mathcal{P}})$
Partition of V : $(V_i)_{i \in \mathcal{P}}$

- Play: $\pi \in \text{Plays} \subseteq V^{\omega}$ consistent with E, history: $h \in V^*$,
- Strategy for $i \in \mathcal{P}$: function $\sigma_i : V^*V_i \to V$, $hv \mapsto \sigma_i(hv)$.

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Example - Games played on graphs

Define the following goals:

- player \circ wants to visit v_1 at least once,
- player \diamond wants to visit v_2 infinitely often.

Example - Games played on graphs

Define the following goals:

- player \circ wants to visit v_1 at least once,
- player ◊ wants to visit v₂ infinitely often.

Can players ensure their goals?

Example - Games played on graphs

Define the following goals:

- player \circ wants to visit v_1 at least once,
- player ◊ wants to visit v₂ infinitely often.

Can players ensure their goals?

No.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i$ stategy of player $i, \langle \sigma_{-i}, \tau_i \rangle_{v_0}$ is not better than $\langle \sigma \rangle_{v_0}$ for i.

- player wants to visit v₁,
- player \diamond wants to visit v_2 inf. often.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

Do there exist NEs from v_0 ?

- player ∘ wants to visit v₁,
- player \diamond wants to visit v_2 inf. often.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

Do there exist NEs from v_0 ?

$$\rightarrow \sigma_{\diamond}(hv_3) = v_0, \ \sigma_{\circ}(hv_0) = v_3.$$

- player wants to visit v₁,
- player \diamond wants to visit v_2 inf. often.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

Do there exist NEs from v_0 ?

$$\Rightarrow$$
 $\sigma_{\diamondsuit}(hv_3) = v_0$, $\sigma_{\circlearrowleft}(hv_0) = v_3$.
 \Rightarrow $\sigma'_{\diamondsuit}(hv_3) = v_1$, $\sigma'_{\circlearrowleft}(hv_0) = v_2$ if v_1 in h , else v_3 .

- player wants to visit v₁,
- player \diamond wants to visit v_2 inf. often.

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ from which no player has the incentive to unilaterally deviate, i.e.,

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma_{-i}, \tau_i \rangle_{v_0} \text{ is not better than } \langle \sigma \rangle_{v_0} \text{ for } i.$

- player ∘ wants to visit v₁,
- player \diamond wants to visit v_2 inf. often.

Do there exist NEs from v_0 ?

$$\Rightarrow \sigma_{\diamondsuit}(hv_3) = v_0, \ \sigma_{\circlearrowleft}(hv_0) = v_3.$$

 $\Rightarrow \sigma'_{\diamondsuit}(hv_3) = v_1, \ \sigma'_{\circlearrowleft}(hv_0) = v_2 \text{ if } v_1$
in h , else v_3 .

Note: $\langle \sigma' \rangle_{\nu_0}$ is better than $\langle \sigma \rangle_{\nu_0}$ for both players.

Broader objectives

Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$.

What if we take more complex objectives for both players?

Study NEs in all cases?

Christophe Grandmont May 16, 2025

¹See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games. ⋄ ⋄ ⋄

Broader objectives

Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$.

What if we take more complex objectives for both players?

Study NEs in all cases?

Broader setting: "preference relations" $\prec_i \subseteq V^\omega \times V^\omega$ to compare plays.¹

¹See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games. ⋄ ⋄ ⋄

Broader objectives

Classical setting: **objectives** Ω_i : Plays $\rightarrow \mathbb{Q}$.

What if we take more complex objectives for both players?

Study NEs in all cases?

Broader setting: "preference relations" $\langle i \subseteq V^{\omega} \times V^{\omega} \rangle$ to compare plays.

¹See, e.g., Bouyer et al., Nash Equilibria for Reachability Objectives in Multi-player Timed Games, or Pauly, Le Roux, Equilibria in multi-player multi-outcome infinite sequential games.

Properties of preference relations

Properties of preference relations

Usual properties

• Reflexivity: $\forall x, x < x$,

• Irreflexivity: $\forall x, x \not\nmid x$,

• Transitivity: $\forall x, y, z, x < y \land y < z \Rightarrow x < z$,

• Totality: $\forall x, y, x \neq y \Rightarrow x < y \lor y < x$,

• ...

Properties of preference relations

Usual properties

- Reflexivity: $\forall x, x < x$,
- Irreflexivity: $\forall x, x \nmid x$,
- Transitivity: $\forall x, y, z, x < y \land y < z \Rightarrow x < z$,
- Totality: $\forall x, y, x \neq y \Rightarrow x < y \lor y < x$,
- ...

We expect < to have an order structure;

- strict partial order (irreflexive, transitive),
- or preorder (reflexive, transitive).

 \sim Define < with a deterministic parity automaton (DPA) on $V \times V$ that synchronously reads two ω -words.

 $\mathcal{L}(\mathcal{A}) \subseteq V^{\omega} \times V^{\omega}$ can be seen as a binary relation: ω -Automatic Relation!

Can we check whether < is a strict partial order?

Can we check whether < is a strict partial order?

Proposition

Deciding whether an ω -automatic relation \prec defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NL-complete.

Can we check whether < is a strict partial order?

Proposition

Deciding whether an ω -automatic relation \prec defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NL-complete.

Such a structure (V^{ω}, \prec) captured by ω -automata is called ω -automatic.

Can we check whether < is a strict partial order?

Proposition

Deciding whether an ω -automatic relation \prec defined by a DPA is reflexive (resp. irreflexive, transitive, total) is NL-complete.

Such a structure (V^{ω}, \prec) captured by ω -automata is called ω -automatic.

Theorem [B. R. Hodgson, Décidabilité par automate fini, 1983]

The First-Order theory of every ω -automatic structure is decidable.

Games with ω -automatic preference relations

A game is a tuple $\mathcal{G} = (A, (<_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players.

Games with ω -automatic preference relations

A game is a tuple $\mathcal{G} = (A, (<_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players.

 \rightarrow The previous example becomes $\pi \prec_i \pi'$ if $\Omega_i(\pi') = 1$ and $\Omega_i(\pi) = 0$.

Games with ω -automatic preference relations

A game is a tuple $\mathcal{G} = (A, (<_i)_{i \in \mathcal{P}})$ with ω -automatic strict partial orders for the players.

 \rightarrow The previous example becomes $\pi \prec_i \pi'$ if $\Omega_i(\pi') = 1$ and $\Omega_i(\pi) = 0$.

Nash equilibria and decisions problems

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in \mathcal{P}}$ such that

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma \rangle_{v_0} \not\downarrow_i \langle \sigma_{-i}, \tau_i \rangle_{v_0}.$

Nash equilibria and decisions problems

A Nash Equilibrium (NE) is a strategy profile $\sigma = (\sigma_i)_{i \in P}$ such that

 $\forall i \in \mathcal{P}, \forall \tau_i \text{ stategy of player } i, \langle \sigma \rangle_{v_0} \not\downarrow_i \langle \sigma_{-i}, \tau_i \rangle_{v_0}.$

Decision problems for games with ω -automatic strict partial orders:

- (NE existence) Does there exist an NE σ ?
- (Constrained NE existence) Given some threshold lassoes $(\rho_i)_{i \in \mathcal{P}}$, does there exist an NE σ such that $\rho_i \prec_i \langle \sigma \rangle_{\nu_0}$?
- (NE checking) Given finite memory strategies $(\sigma_i)_{i \in \mathcal{P}}$, do these form an NE?
- (NE outcome checking) Given a lasso π , is it an NE outcome?

《□▶ 《圖▶ 《意》 《意》 「意」 釣@@

NE existence problem

Does there always exist a Nash Equilibrium?

NE existence problem

Does there always exist a Nash Equilibrium?

No. We can encode "reachability as late as possible":

NE existence problem

Does there always exist a Nash Equilibrium?

No. We can encode "reachability as late as possible":

Results

	NE Existence	Constrained NE Existence
No restriction	2EXPTIME	2EXPTIME
$ \mathcal{P} $ fixed	EXPTIME	-
$ \mathcal{P} $ and d_i fixed ²	-	EXPTIME
$ \mathcal{P} $ = 1	PSPACE-complete	PSPACE-complete

In case of existence: finite-memory strategies!

²Parity acceptance max range

Results

	NE Existence	Constrained NE Existence
No restriction	2EXPTIME	2EXPTIME
$ \mathcal{P} $ fixed	EXPTIME	-
$ \mathcal{P} $ and d_i fixed ²	-	EXPTIME
$ \mathcal{P} = 1$	PSPACE-complete	PSPACE-complete

In case of existence: finite-memory strategies!

Theorem (NE (Outcome) Checking)

- The NE checking problem is PSPACE-complete.
- \bullet The NE outcome checking problem is in NP \cap coNP and Parity-hard.

Solve a three-player "zero-sum" game with imperfect information.³

Christophe Grandmont May 16, 2025

Solve a three-player "zero-sum" game with imperfect information.³

• \mathbb{PC} game: \mathbb{P} creates π ; \mathbb{C} can deviate at any time at $v \in V_i$; if so, \mathbb{P} retaliates to show that the deviation π' is such that $\pi \not\leftarrow_i \pi'$.

Christophe Grandmont May 16, 2025

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis* Problem for Subgame Perfect Equilibria and omega-regular Objectives.

Solve a three-player "zero-sum" game with imperfect information.³

• \mathbb{PC} game: \mathbb{P} creates π ; \mathbb{C} can deviate at any time at $v \in V_i$; if so, \mathbb{P} retaliates to show that the deviation π' is such that $\pi \not\models_i \pi'$.

$$\begin{array}{c} \mathbb{P}: \ v_k \to v_{k+1}? \\ \mathbb{C}: \ \text{ok / nope.} \end{array} \begin{cases} v_1 \\ v_2 & \\ v_3 & \\ v_4 & \\ v_5 & \\ v_6 & \\ v_7 & \\ v_8 & \\ v_8 & \\ v_8 & \\ v_8 & \\ v_9 &$$

 $\exists \sigma_{\mathbb{P}_{\text{"left"}}} \ \forall \sigma_{\mathbb{C}} \ \exists \sigma_{\mathbb{P}_{\text{"right"}}}, \ \mathbb{P} \text{ wins.}$

Christophe Grandmont May 16, 2025

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis* Problem for Subgame Perfect Equilibria and omega-regular Objectives.

Solve a three-player "zero-sum" game with imperfect information.³

• $\mathbb{P}_1\mathbb{CP}_2$ game: \mathbb{P}_1 creates π ; \mathbb{C} can deviate at any time at $v \in V_i$; if so, \mathbb{P}_2 retaliates to show that the deviation π' is such that $\pi \not\leftarrow_i \pi'$.

 $\exists \sigma_{\mathbb{P}_1} \ \forall \sigma_{\mathbb{C}} \ \exists \sigma_{\mathbb{P}_2}, \ \mathbb{P}_1 \ \text{and} \ \mathbb{P}_2 \ \text{win}$

$\mathbb{P}_1\mathbb{CP}_2$ game with imperfect information on \mathbb{P}_1 !

Christophe Grandmont May 16, 2025

³Bruyère, Raskin, Reynouard, Van Den Bogaard, *The Non-Cooperative Rational Synthesis* Problem for Subgame Perfect Equilibria and omega-regular Objectives.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

 ω -Recognizable Relations $\subseteq \omega$ -Automatic Relations.

Christophe Grandmont May 16, 2025

⁴Löding, Spinrath, *Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words*, 2019.

A relation < is ω -recognizable if there exists $k \in \mathbb{N}$ such that $< = \bigcup_{i=1}^{k} L_i \times R_i$, for $L_i, R_i \subseteq V^{\omega}$, ω -regular languages.

 ω -Recognizable Relations $\subseteq \omega$ -Automatic Relations.

We can decide in 2EXPTIME whether an ω -automatic relation is ω -recognizable⁴

Christophe Grandmont May 16, 2025

ω -Recognizable Preorder

When \lesssim is a preorder, x and y are equivalent, $x \sim y$, if $x \lesssim y$ and $y \lesssim x$.

Corollary of [Löding, Spinrath, 2019]

An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite number of equivalence classes.

ω -Recognizable Preorder

When \lesssim is a preorder, x and y are equivalent, $x \sim y$, if $x \lesssim y$ and $y \lesssim x$.

Corollary of [Löding, Spinrath, 2019]

An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite number of equivalence classes.

Theorem (Existence of NE with ω -recognizable preference relations)

There exists a Nash Equilibrium in every game with ω -recognizable preorders (resp. strict weak orders).

Follows ideas of [Ummels, *The Complexity of Nash Equilibria in Infinite Multiplayer Games*, 2008].

ω -Recognizable Preorder

When \lesssim is a preorder, x and y are equivalent, $x \sim y$, if $x \lesssim y$ and $y \lesssim x$.

Corollary of [Löding, Spinrath, 2019]

An ω -automatic preorder \lesssim is ω -recognizable if and only if its equivalence relation \sim has a finite number of equivalence classes.

Theorem (Existence of NE with ω -recognizable preference relations)

There exists a Nash Equilibrium in every game with ω -recognizable preorders (resp. strict weak orders).

Follows ideas of [Ummels, *The Complexity of Nash Equilibria in Infinite Multiplayer Games*, 2008].

Thank you! Questions?

Christophe Grandmont May 16, 2025 15