As Soon as Possible but Rationally: Rational Synthesis for Reachability on Weighted Graphs Highlights'24

Christophe Grandmont

< □ > < (四 > < 三 > < 三 >) 三 三

September 19, 2024 Bordeaux, France

Work with Véronique Bruyère and Jean-François Raskin Published in CONCUR'24

Multiplayer Reachability Games

→ Model interactions with (turn-based) games played on graphs

• Player 0: system, players 1, ..., t: component of the environment...

Christophe Grandmont

As Soon as Possible but Rationally

September 19, 2024

Multiplayer Reachability Games

→ Model interactions with (turn-based) games played on graphs

- Player 0: system, players 1, ..., t: component of the environment...
- ...each with a quantitative reachability objective (T_i, w_i) :
 - $T_i \subseteq V$ a target set,
 - $w_i: E \to \mathbb{N}$ a weight function,
 - \rightarrow associate a **cost** to each play $\pi = \pi_0 \pi_1 \pi_2 \dots$,

$$\operatorname{cost}_{i}(\pi) = \begin{cases} \sum_{k=1}^{n} w_{i}((\pi_{k-1}, \pi_{k})) & \text{ for } n = \inf\{k \in \mathbb{N} \mid \pi_{k} \in T_{i}\} < +\infty, \\ +\infty & \text{ if } n = +\infty. \end{cases}$$

 $\begin{array}{c} & \mathsf{Nash} \ \mathsf{Equilibrium} \ (\mathsf{NE}): \ \mathsf{players} \ 1, \dots, t \ \mathsf{agree} \ \mathsf{for} \\ & \mathsf{strategies} \ \mathsf{where} \ \mathsf{no} \ \mathsf{one} \ \mathsf{has} \ \mathsf{an} \ \mathsf{incentive} \ \mathsf{to} \\ & \mathsf{unilaterally} \ \mathsf{deviate}. \end{array}$

⁴ Pareto Optimality: minimize $(cost_1, \ldots, cost_t)$.

Nash Equilibrium (NE): players 1,..., t agree for strategies where no one has an incentive to unilaterally deviate.

Rationality is

Nash Equilibrium (NE): players 1,...,t agree for strategies where no one has an incentive to unilaterally deviate.

Rationality is

A strategy profile $\sigma = (\sigma_0, ..., \sigma_t)$ is an NE if for each player $i \ (\neq 0)$, each strategy τ_i of i (called deviating),

$$\operatorname{cost}_i(\langle \sigma \rangle) \leq \operatorname{cost}_i(\langle \sigma_0, ..., \sigma_{i-1}, \tau_i, \sigma_{i+1}, ..., \sigma_t \rangle).$$

The play $\langle \sigma \rangle$ is called an **NE outcome**.

Nash Equilibria in Stackelberg Game: Example

- All weights constant, $w_i = 1$,
- $T_0 = \{v_3\},\$

•
$$T_{\Box} = \{v_3, v_5\},$$

•
$$T_\diamond = \{v_1, v_4\}.$$

Christophe Grandmont

As Soon as Possible but Rationally

- 4 🗗 ▶

B → B

Nash Equilibria in Stackelberg Game: Example

For σ_0 such that $\sigma_0(v_1) = v_3$:

• All weights constant, $w_i = 1$,

•
$$T_0 = \{v_3\},$$

•
$$T_{\Box} = \{v_3, v_5\},$$

•
$$T_\diamond = \{v_1, v_4\}.$$

Christophe Grandmont

As Soon as Possible but Rationally

Nash Equilibria in Stackelberg Game: Example

• All weights constant, $w_i = 1$,

•
$$T_0 = \{v_3\},$$

•
$$T_{\Box} = \{v_3, v_5\},$$

•
$$T_{\diamond} = \{v_1, v_4\}.$$

For σ_0 such that $\sigma_0(v_1) = v_3$:

	player 0	player 🗆	player 🗇	NE outcome ?
$v_0 v_1 v_3$	2	2	1	Yes
$v_0 v_2 v_5$	$+\infty$	2	$+\infty$	No (player $\diamond: v_2 \rightarrow v_4$)
$v_0 v_2 v_4$	$+\infty$	$+\infty$	2	No (player $\square: v_0 \rightarrow v_1$)

3 🕨 🤅 3

Rational Synthesis

The (non-cooperative) **Rational Synthesis** problem asks to decide whether there exists a strategy of player 0 such that every *rational* response of the environment *to this strategy* produces a play π with $cost_0(\pi) \le c$, i.e.,

 $\exists \sigma_0, \forall \pi \in \mathsf{Plays}_{\sigma_0}, \pi \text{ is an NE outcome} \Rightarrow \mathsf{cost}_0(\pi) \leq c.$

As Soon as Possible but Rationally

Rational Synthesis

The (non-cooperative) **Rational Synthesis** problem asks to decide whether there exists a strategy of player 0 such that every *rational* response of the environment *to this strategy* produces a play π with $cost_0(\pi) \le c$, i.e.,

 $\exists \sigma_0, \forall \pi \in \mathsf{Plays}_{\sigma_0}, \pi \text{ is an NE outcome} \Rightarrow \mathsf{cost}_0(\pi) \leq c.$

→ Less restricted version: Cooperative Rational Synthesis:

 $\exists \sigma_0, \exists \pi \in \mathsf{Plays}_{\sigma_0}, \pi \text{ is an NE outcome } \land \mathsf{cost}_0(\pi) \le c.$

All results

Verification: give σ_0 as input through a nondeterministic or deterministic Mealy machine

Christophe Grandmont

As Soon as Possible but Rationally

¹NEXPTIME-complete for a *common weight function*: Brihaye, Bruyère, and Reghem, "Quantitative Reachability Stackelberg-Pareto Synthesis is NEXPTIME-complete", RP 2023. ²Bruyère, Raskin, and Tamines, "Stackelberg-Pareto Synthesis", CONCUR 2021 ³Condurache et al., "The Complexity of Rational Synthesis", ICALP 2016 ⁴Christophe Grandmont, Master's Thesis 2023

All results

Verification: give σ_0 as input through a nondeterministic or deterministic Mealy machine

	Coop. synthesis	Non-coop. synthesis	Non-coop. verif. (det.)	Non-coop. verif. (nondet.)
Pareto, weights	PSPACE-complete	NEXPTIME-hard ¹	Π ₂ ^P -complete	PSPACE-complete
Pareto, qualitative	PSPACE-complete	NEXPTIME-complete ²	Π ^P ₂ -complete	PSPACE-complete
Nash, weights Nash, qualitative	NP-complete NP-complete ³	Unknown (EXPTIME-hard) PSPACE-complete ³	coNP- complete coNP- complete ⁴	coNP- complete coNP- complete ⁴
Pareto, weights in $\mathbb Z$	-	Undecidable	-	-
Nash, weights in $\ensuremath{\mathbb{Z}}$	-	Undecidable	-	-

¹NEXPTIME-complete for a *common weight function*: Brihaye, Bruyère, and Reghem,
"Quantitative Reachability Stackelberg-Pareto Synthesis is NEXPTIME-complete", RP 2023.
²Bruyère, Raskin, and Tamines, "Stackelberg-Pareto Synthesis", CONCUR 2021
³Condurache et al., "The Complexity of Rational Synthesis", ICALP 2016
⁴Christophe Grandmont, Master's Thesis 2023

Christophe Grandmont

As Soon as Possible but Rationally

All results

Verification: give σ_0 as input through a nondeterministic or deterministic Mealy machine

	Coop. synthesis	Non-coop. synthesis	Non-coop. verif. (det.)	Non-coop. verif. (nondet.)
Pareto, weights	PSPACE-complete	NEXPTIME-hard ¹	Π ₂ ^P -complete	PSPACE-complete
Pareto, qualitative	PSPACE-complete	NEXPTIME-complete ²	Π ^P ₂ -complete	PSPACE-complete
Nash, weights Nash, qualitative	NP-complete NP-complete ³	Unknown (EXPTIME-hard) PSPACE-complete ³	coNP- complete coNP- complete ⁴	coNP- complet e coNP- complet e ⁴
Pareto, weights in \mathbb{Z}	-	Undecidable	-	-
Nash, weights in $\ensuremath{\mathbb{Z}}$	-	Undecidable	-	-

Thank you !

¹NEXPTIME-complete for a *common weight function*: Brihaye, Bruyère, and Reghem, "Quantitative Reachability Stackelberg-Pareto Synthesis is NEXPTIME-complete", RP 2023. ²Bruyère, Raskin, and Tamines, "Stackelberg-Pareto Synthesis", CONCUR 2021 ³Condurache et al., "The Complexity of Rational Synthesis", ICALP 2016 ⁴Christophe Grandmont, Master's Thesis 2023

Christophe Grandmont

As Soon as Possible but Rationally