As Soon as Possible but Rationally

Christophe Grandmont

April 26 2024

Work with Véronique Bruyère and Jean-François Raskin

Topic: Reactive Systems

A system (player 0) interacting with the environment (player 1).

System is controllable (coffee machine, elevator, autopilot, ...)
 Environment is not (humans, other independent systems, ...)

 \sim How to guarantee a specification Ω_0 in such reactive systems ?

Rational Synthesis

Guarantee Ω_0 , in which condition ?

Zero-sum ? Environment completely antagonistic... → Too simple !
 Instead, assume that the environment is composed of multiple components 1,..., t, each with a specification Ω_i.
 → The environment behaves "rationally" !

Rational Synthesis

The **Rational Synthesis** problem asks to decide whether there exists a strategy of player 0 such that every *rational* response of the environment *to this strategy* satisfies a goal Ω_0 of player 0.

Game played on graphs

→ Model interactions with games played on graphs ...

... where the environment plays "rationally" !

Game played on graphs

Directed graph: (V, E)Set of players: $\mathcal{P} = \{0, ..., t\}$ Partition of V: $(V_i)_{i \in \mathcal{P}}$

Play: π ∈ Plays ⊆ V^ω consistent with E, history: h ∈ V^{*},
Strategy for i ∈ P: function σ_i : V^{*}V_i → V, hv ↦ σ_i(hv).

Game played on graphs: Reachability objective

Associate an objective with each player *i*: Quantitative reachability (T_i, w_i) :

 $T_i \subseteq V$, $w_i : E \to \mathbb{N}$, with $\text{cost}_i : \text{Plays} \to \mathbb{N} \cup \{+\infty\}$:

• for a play $\pi = \pi_0 \pi_1 \dots$ and $n = \inf\{k \in \mathbb{N} \mid \pi_k \in T_i\}$,

$$\operatorname{cost}_{i}(\pi) = \begin{cases} \sum_{k=1}^{n} w_{i}((\pi_{k-1}, \pi_{k})) & \text{if } n < +\infty, \\ +\infty & \text{otherwise.} \end{cases}$$

(When $w_i(e) = 0$ for all $e \in E \rightsquigarrow$ Qualitative reachability)

∼→ Goal of the system: $cost_0(\pi) \le c$, for a given threshold $c \in \mathbb{N}$. ¬→ Goal of each player of the environment: Minimize $cost_i$, then be antagonistic towards the system.

What does "minimize" mean (i.e., be rational) ?

Pareto-Optimality

Stackelberg game: player 0 fixes σ_0 , and the environment behaves rationally according to σ_0 . Here, players 1,..., *t* agree to get the a lowest $\text{cost}_{env} = (\text{cost}_1, \dots, \text{cost}_t)$: **Pareto-Optimality** !

 \rightsquigarrow Partial order \leq on \mathbb{N}^t , e.g.

 $P_{\sigma_0} = \min\{ \operatorname{cost}_{env}(\pi) \mid \pi \text{ play consistent with } \sigma_0 \}.$

Pareto-Optimality: Example

• All weights constant, $w_i = 1$,

$$T_0 = \{v_3, v_4\}$$

•
$$T_1 = \{v_3, v_5\},$$

•
$$T_2 = \{v_1, v_4\}.$$

For σ_0 such that $\sigma_0(v_1) = v_2$:

 $\begin{array}{l} v_0 v_1 v_2 v_5 : \text{player } 0: +\infty, & \text{env: } (3,1) \\ v_0 v_1 v_2 v_4 : \text{player } 0: 3, & \text{env: } (+\infty,1) \\ v_0 v_2 v_5 : \text{player } 0: +\infty, & \text{env: } (2,+\infty) \\ v_0 v_2 v_4 & : \text{player } 0: 2, & \text{env: } (+\infty,2) \end{array} \right\} P_{\sigma_0} = \{(3,1), (2,+\infty)\}$

For σ'_0 such that $\sigma'_0(v_1) = v_3$:

$$\begin{array}{ll} v_0 v_1 v_3 : \text{player 0: } 2, & \text{env: } (2,1) \\ v_0 v_2 v_5 : \text{player 0: } +\infty, & \text{env: } (2,+\infty) \\ v_0 v_2 v_4 : \text{player 0: } 2, & \text{env: } (+\infty,2) \end{array} \right\} P_{\sigma_0} = \{(2,1), (+\infty,2)\}$$

Pareto Synthesis

Let $\mathcal{G} = (V, E, V_0, (T_i, w_i)_{0 \le i \le k})$ be a game and $c \in \mathbb{N}$ be a threshold, *Non-Cooperative Pareto Synthesis* (NCPS) problem:

 $\exists \sigma_0, \ \forall \pi \in \mathsf{Plays}_{\sigma_0}, \ \operatorname{cost}_{\mathsf{env}}(\pi) \in P_{\sigma_0} \Rightarrow \operatorname{cost}_0(\pi) \leq c.$

Cooperative Pareto Synthesis (CPS) problem:

 $\exists \sigma_0, \ \exists \pi \in \mathsf{Plays}_{\sigma_0}, \ \operatorname{cost}_{\mathsf{env}}(\pi) \in P_{\sigma_0} \wedge \operatorname{cost}_0(\pi) \leq c.$

Pareto Results

	Coop. synthesis	Non-coop. synthesis
Pareto, weights	PSPACE-complete	NEXPTIME-complete ¹
Pareto, qualitative	PSPACE-complete	NEXPTIME-complete ²

Verification variants: given a strategy σ_0 defined by a **deterministic** Mealy machine, is σ_0 a solution to a synthesis problem ? (Is every σ_0 defined by a **nondeterministic** Mealy machine a solution ?)

	Non-coop. verif. (det.)	Non-coop. verif. (nondet.)
Pareto, weights	Π_2^{P} -complete	PSPACE-complete
Pareto, qualitative	Π_2^{P} -complete	PSPACE-complete

²Bruyère, Raskin, and Tamines, "Stackelberg-Pareto Synthesis", CONCUR 2021

Christophe Grandmont

¹Brihaye, Bruyère, and Reghem, "Quantitative Reachability Stackelberg-Pareto Synthesis is NEXPTIME-Complete", RP 2023

Cooperative Synthesis: Sketch

PSPACE membership of the CPS problem:

 $\exists \sigma_0, \ \exists \pi \in \mathsf{Plays}_{\sigma_0}, \ \operatorname{cost}_{\mathsf{env}}(\pi) \in P_{\sigma_0} \wedge \operatorname{cost}_0(\pi) \leq c.$

Approach by 3 steps:

- **1** Guess a lasso $\pi = \mu(\nu)^{\omega}$, (Is is sufficient ? Which size ?)
- **2** Check whether $cost_0(\pi) \leq c$, (Run through $\mu\nu$)
- **3** Check whether $cost_{env}(\pi) \in P_{\sigma_0}$ (for σ_0 to determine). (How ?!)

Lemma

For Step 1, polynomial-length lasso is sufficient.

Cooperative Synthesis: Sketch

F

3 Given $\pi = \mu(\nu)^{\omega}$, check whether $p = \text{cost}_{env}(\pi) \in P_{\sigma_0}$ for σ_0 to determine.

or each prefix
$$h$$
 of π , player 0 must ensure

$$\Omega^{(h)} = \{\pi' \in \text{Plays} \mid \neg(\text{cost}_{\text{env}}(h\pi') < p)\}, \text{ i.e.,}$$

$$(\forall 1 \le i \le t, \ p'_i \ge p_i) \lor (\exists 1 \le i \le t, \ p'_i > p_i).$$

It amounts to solve a zero-sum game (\mathcal{G},Ω) with

$$\Omega = \left(\bigcap_{1 \le i \le t} \mathsf{Safe}_{\ge d_i}(T_i)\right) \cup \left(\bigcup_{1 \le i \le t} \mathsf{Safe}_{\ge d_i+1}(T_i)\right),$$

with bounded safety objectives $\operatorname{Safe}_{\geq d}(T) = \{\pi \mid \operatorname{cost}(\pi) \geq d\} \ (d \in \mathbb{N})$

Cooperative Synthesis: Sketch

Proposition

Deciding the winning of a two-player zero-sum game (\mathcal{G},Ω) with

$$\Omega = \left(\bigcap_{1 \le i \le t} \mathsf{Safe}_{\ge d_i}(T_i)\right) \cup \left(\bigcup_{1 \le i \le t} \mathsf{Safe}_{\ge d_i+1}(T_i)\right).$$

is in PSPACE.

 \rightsquigarrow The Cooperative Synthesis problem belongs to <code>PSPACE</code> !

The NCPV problem is in Π_2^P iff the coNCPV problem is in $\Sigma_2^P = NP^{NP}$. The coNCPV problem amounts to solve, in some game \mathcal{G}' where the environment is the only player:

 $\exists \pi \in \mathsf{Plays}, \ \mathsf{cost}_{\mathsf{env}}(\pi) \in P \land \mathsf{cost}_0(\pi) > c.$

Goal: algorithm in NP^{NP}

1 Guess a lasso $\pi = \mu(\nu)^{\omega}$, (Exponential length B)

2 Check whether $cost_0(\pi) > c$, (Exponential length C)

3 Check whether $cost_{env}(\pi) \in P$. (Environment is alone, in coNP \bigcirc)

Player 1 is the only one to play, $T_0 = T_1 = \{v_1\}$, $w_0 = 1$, and $w_1 = 0$.

Solutions to the coNCPV problem are $\pi = (v_0)^k (v_1)^{\omega}$ for k > c, but c given in binary $\sim |(v_0)^k v_1|$ exponential.

Goal: Steps 1 and 2 with an NP algorithm:

- **1** Guess a lasso $\pi = \mu(\nu)^{\omega} \rightsquigarrow NP$?
- 2 Check whether $cost_0(\pi) > c$,
- 3 Check whether $cost_{env}(\pi) \in P_{\sigma_0} \rightsquigarrow coNP !$

Solution: split π into sequences that we succinctly guess using Parikh Automata.

 \sim Parikh: *w* is accepted iff there exists a run ending in a final state $q \in F$ and the accumulated weight is in $C \subseteq \mathbb{N}^k$ (even with $C = \{\overline{c}\}$).

Lemma

The nonemptiness problem of Parikh automata is NP-complete.

- We want π such that $cost(\pi) = \bar{c}$
- \sim Guess a lasso π of exponential length:
 - **1** guess markers v_1, \ldots, v_n belonging to some distinct target sets,
 - 2 guess costs $\bar{c}^{(i)}$ between v_i and v_{i+1} ,
 - 3 use Parikh automata to guess sequences $\rho^{(i)}$ from v_i and v_{i+1} with $\operatorname{cost}(\rho^{(i)}) = \overline{c}^{(i)}$.

To sum up:

- **1** Succinctly guess $\pi = \mu(\nu)^{\omega}$, $\operatorname{cost}_0(\pi)$ such that $\operatorname{cost}_0(\pi) > c$, and a cost tuple $p = \operatorname{cost}_{env}(\pi)$ through multiple sequences, (poly.)
- 2 Check that $cost_{env}(\pi) \in P_{\sigma_0}$. (NP Oracle)

→ **Belongs to** NP^{NP} = Σ_2^P , i.e., the NCPV problem belongs to Π_2^P .

All results

Nash variants: instead of asking $cost_{env}(\pi) \in P_{\sigma_0}$, ask that π is the outcome of a **Nash Equilibrium**. **Restricted environment**: e.g. one player in the environment.

	Coop. synthesis	Non-coop. synthesis	Non-coop. verif. (det.)	Non-coop. verif. (nondet.)
Pareto, weights	PSPACE-complete	NEXPTIME-complete ³	Π ^P ₂ -complete	PSPACE-complete
Pareto, qualitative	PSPACE-complete	NEXPTIME-complete ⁴	Π ₂ ^P -complete	PSPACE-complete
Nash, weights Nash, qualitative	NP-complete NP-complete ⁵	Unknown (EXPTIME-hard) PSPACE-complete ⁵	coNP- complete coNP- complete ⁶	coNP- complete coNP- complete⁶
Nash, weights, 1-env	NP-complete	EXPTIME (PSPACE-hard)	coNP	coNP- complete

Thank you !

⁶Christophe Grandmont, Master's Thesis 2023

Christophe Grandmont

As Soon as Possible but Rationally

³Brihaye, Bruyère, and Reghem, "Quantitative Reachability Stackelberg-Pareto Synthesis is NEXPTIME-Complete", RP 2023

⁴Bruyère, Raskin, and Tamines, "Stackelberg-Pareto Synthesis", CONCUR 2021

⁵Condurache et al., "The Complexity of Rational Synthesis", ICALP 2016