As Soon as Possible but Rationally CONCUR'24

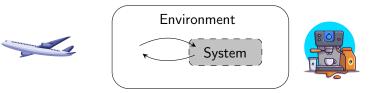
Christophe Grandmont

September 10, 2024 Calgary, Canada

Work with Véronique Bruyère and Jean-François Raskin

Topic: Reactive Systems

A system (player 0) interacting with the environment (player 1).



System is controllable (coffee machine, elevator, autopilot, ...)
 Environment is not (humans, other independent systems, ...)

 \sim How to guarantee a specification Ω_0 in such reactive systems ?

Rational Synthesis

Guarantee Ω_0 , in which condition ?

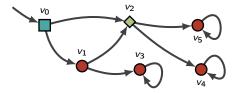
Zero-sum ? Environment completely antagonistic... → Too simple !
 Instead, assume that the environment is composed of multiple components 1,..., t, each with a specification Ω_i.
 → The environment behaves "rationally" !

Rational Synthesis

The **Rational Synthesis** problem asks to decide whether player 0 can *ensure* some goal Ω_0 with a *strategy* against every *rational response* of the environment *to this strategy*.

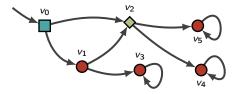
Game played on graphs

→ Model interactions with games played on graphs ...



... where the environment plays "rationally" !

Game played on graphs



Directed graph: (V, E)Set of players: $\mathcal{P} = \{0, ..., t\}$ Partition of V: $(V_i)_{i \in \mathcal{P}}$

Play: π ∈ Plays ⊆ V^ω consistent with E, history: h ∈ V^{*},
Strategy for i ∈ P: function σ_i: V^{*}V_i → V, hv ↦ σ_i(hv).

Game played on graphs: Reachability objective

Associate an objective with each player *i*: Quantitative reachability (T_i, w_i) :

 $T_i \subseteq V$, $w_i : E \to \mathbb{N}$, with $\text{cost}_i : \text{Plays} \to \mathbb{N} \cup \{+\infty\}$:

• for a play $\pi = \pi_0 \pi_1 \dots$ and $n = \inf\{k \in \mathbb{N} \mid \pi_k \in T_i\}$,

$$\operatorname{cost}_{i}(\pi) = \begin{cases} \sum_{k=1}^{n} w_{i}((\pi_{k-1}, \pi_{k})) & \text{if } n < +\infty, \\ +\infty & \text{otherwise.} \end{cases}$$

(When $w_i(e) = 0$ for all $e \in E \rightsquigarrow$ Qualitative reachability)

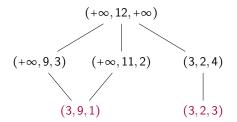
∼→ Goal of the system: $cost_0(\pi) \le c$, for a given threshold $c \in \mathbb{N}$. ¬→ Goal of each player of the environment: Minimize $cost_i$, then be antagonistic towards the system.

What does "minimize" mean (i.e., be rational) ?

Pareto-Optimality

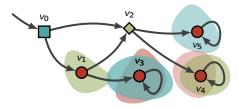
Stackelberg game: player 0 fixes σ_0 , and the environment behaves rationally according to σ_0 . Here, players 1,..., *t* agree to get the a lowest $\text{cost}_{env} = (\text{cost}_1, \dots, \text{cost}_t)$: **Pareto-Optimality** !

→ Partial order \leq on \mathbb{N}^t , e.g.



 $P_{\sigma_0} = \min\{ \operatorname{cost}_{env}(\pi) \mid \pi \text{ play consistent with } \sigma_0 \}.$

Pareto-Optimality: Example



- All weights constant, $w_i = 1$,
- Threshold c = 2

$$T_0 = \{v_3, v_4\},\$$

•
$$T_1 = \{v_3, v_5\},$$

 $\bullet \ T_2 = \{v_1, v_4\}.$

For σ_0 such that $\sigma_0(v_1) = v_2$:

 $\begin{array}{ccc} v_0 v_1 v_2 v_5 : \text{player } 0: +\infty, & \text{env: } (3,1) \\ v_0 v_1 v_2 v_4 : \text{player } 0: 3, & \text{env: } (+\infty,1) \\ v_0 v_2 v_5 : \text{player } 0: +\infty, & \text{env: } (2,+\infty) \\ v_0 v_2 v_4 : \text{player } 0: 2, & \text{env: } (+\infty,2) \end{array} \right\} P_{\sigma_0} = \{(3,1), (2,+\infty)\}$

For σ'_0 such that $\sigma'_0(v_1) = v_3$:

$$\begin{array}{ll} v_0 v_1 v_3 : \text{player 0: } 2, & \text{env: } (2,1) \\ v_0 v_2 v_5 : \text{player 0: } +\infty, & \text{env: } (2,+\infty) \\ v_0 v_2 v_4 : \text{player 0: } 2, & \text{env: } (+\infty,2) \end{array} \right\} P_{\sigma_0} = \{(2,1), (+\infty,2)\}$$

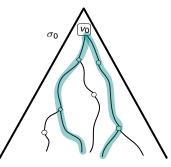
Pareto Synthesis

Let $\mathcal{G} = (V, E, (V_i)_{0 \le t}, (T_i, w_i)_{0 \le i \le k})$ be a game and $c \in \mathbb{N}$ be a threshold, *Non-Cooperative Pareto Synthesis* (NCPS) problem:

 $\exists \sigma_0, \ \forall \pi \in \mathsf{Plays}_{\sigma_0}, \ \operatorname{cost}_{\mathsf{env}}(\pi) \in P_{\sigma_0} \Rightarrow \operatorname{cost}_0(\pi) \leq c.$

Cooperative Pareto Synthesis (CPS) problem:

 $\exists \sigma_0, \ \exists \pi \in \mathsf{Plays}_{\sigma_0}, \ \operatorname{cost}_{\mathsf{env}}(\pi) \in P_{\sigma_0} \wedge \operatorname{cost}_0(\pi) \leq c.$



Pareto Results

	Coop. synthesis	Non-coop. synthesis
Pareto, weights	PSPACE-complete	NEXPTIME-hard ¹
Pareto, qualitative	PSPACE-complete	NEXPTIME-complete ²

Verification variants: given a strategy σ_0 defined by a **deterministic** Mealy machine, is σ_0 a solution to a synthesis problem ? (Is every σ_0 defined by a **nondeterministic** Mealy machine a solution ?)

	Non-coop. verif. (det.)	Non-coop. verif. (nondet.)
		PSPACE-complete
Pareto, qualitative	Π_2^{P} -complete	PSPACE-complete

²Bruyère, Raskin, and Tamines, "Stackelberg-Pareto Synthesis", CONCUR 2021

Christophe Grandmont

¹NEXPTIME-complete for a *common weight function*: Brihaye, Bruyère, and Reghem, "Quantitative Reachability Stackelberg-Pareto Synthesis is NEXPTIME-complete", RP 2023.

Nash Equilibrium

A Nash Equilibrium fixed for player 0 (0-fixed NE) is a strategy profile $\sigma = (\sigma_0, \ldots, \sigma_t)$ such that no player, except player 0, has an incentive to unilaterally deviate from σ .

Non-Cooperative Nash Synthesis (NCNS) problem:

 $\exists \sigma_0, \forall \pi \in \mathsf{Plays}, \quad \pi \text{ is the outcome of a 0-fixed NE} \Rightarrow \mathsf{cost}_0(\pi) \leq c.$

All results

	Coop. synthesis	Non-coop. synthesis	Non-coop. verif. (det.)	Non-coop. verif. (nondet.)
Pareto, weights	PSPACE-complete	NEXPTIME-hard ³	Π ₂ ^P -complete	PSPACE-complete
Pareto, qualitative	PSPACE-complete	NEXPTIME-complete ⁴	Π ₂ ^P -complete	PSPACE-complete
Nash, weights Nash, qualitative	NP-complete NP-complete ⁵	Unknown (EXPTIME-hard) PSPACE-complete ³	coNP- complete coNP- complete⁶	coNP- complete coNP- complete ⁴
Pareto, weights in $\mathbb Z$ Nash, weights in $\mathbb Z$	-	Undecidable Undecidable	-	-

Restricted environment: e.g. one player in the environment : NCNS is in EXPTIME and PSPACE-hard.

Thank you !

³NEXPTIME-complete for a *common weight function*: Brihaye, Bruyère, and Reghem,
 "Quantitative Reachability Stackelberg-Pareto Synthesis is NEXPTIME-complete", RP 2023.
 ⁴Bruyère, Raskin, and Tamines, "Stackelberg-Pareto Synthesis", CONCUR 2021
 ⁵Condurache et al., "The Complexity of Rational Synthesis", ICALP 2016
 ⁶Christophe Grandmont, Master's Thesis 2023

Christophe Grandmont

As Soon as Possible but Rationally