As Soon as Possible but Rationally

Christophe Grandmont

March 15 2024

Work with Véronique Bruyère and Jean-François Raskin (Available on arXiv!)

A system (player 0) interacting with the environment (player 1).

System is controllable (coffee machine, elevator, autopilot, ...)
Environment is not (humans, other independent systems, ...)

 \rightsquigarrow How to guarantee a specification Ω_0 in such reactive system ?

Topic

Guarantee Ω_0 , in which condition ?

- **Zero-sum** ? Environment completely antagonistic... \rightsquigarrow Too simple !
- Instead, assume that the environment is composed of multiple components 1,..., k, each with a specification Ω_i.
- ~ Model these interactions with games played on graphs...

... where the environment plays "rationally" !

Game played on graphs: Arena

Directed graph: (V, E)Set of players: $\mathcal{P} = \{0, \dots, k\}$ Partition of V: $(V_i)_{i \in \mathcal{P}}$

Play: π ∈ V^ω consistent with E, history: h ∈ V* consistent with E,
Strategy for i ∈ P: function σ_i : V*V_i → V.

Game played on graphs: Reachability objective

Associate an objective to each player:

- \rightsquigarrow **Reachability** (T_i, w_i) where
 - $T_i \subseteq V$, $w_i : E \to \mathbb{N}$,

• for a play $\pi = \pi_0 \pi_1 \dots$ and $n = \inf\{k \in \mathbb{N} \mid \pi_k \in T_i\}$,

$$cost_i(\pi) = \begin{cases} \sum_{k=1}^n w_i((\pi_{k-1}, \pi_k)) & \text{ if } n < +\infty, \\ +\infty & \text{ otherwise.} \end{cases}$$

(When $w_i(e) = 0$ for all $e \in E \rightsquigarrow$ qualitative)

 \rightsquigarrow Goal of the system: $cost_0 \le c$, for a threshold $c \in \mathbb{N}$. \rightsquigarrow Goal of each player of the environment: Minimize $cost_i$, then be antagonistic towards the system.

What does "minimize" mean (i.e., be rational)?

Pareto-Optimality

Players $1, \ldots, k$ agree to get the a lowest $cost_{env} = (cost_1, \ldots, cost_k)$: Pareto-Optimality !

 \rightsquigarrow Partial order \preceq on \mathbb{N}^k , e.g.

For σ_0 fixed, $P_{\sigma_0} = \min\{\operatorname{cost}_{env}(\pi) \mid \pi \text{ play consistent with } \sigma_0\}$.

Pareto-Optimality: Example

• All weights constant, $w_i = 1$,

•
$$T_0 = \{v_3, v_4\},$$

•
$$T_1 = \{v_3, v_5\},$$

•
$$T_2 = \{v_1, v_4\}.$$

For σ_0 such that $\sigma_0(v_1) = v_2$:

 $\begin{array}{ll} & v_0 v_1 v_2 v_5 : \text{player } 0: + \infty, & \text{env: } (3,1) \\ & v_0 v_1 v_2 v_4 : \text{player } 0: 3, & \text{env: } (+\infty,1) \\ & v_0 v_2 v_5 & : \text{player } 0: + \infty, & \text{env: } (2,+\infty) \\ & v_0 v_2 v_4 & : \text{player } 0: 2, & \text{env: } (+\infty,2) \end{array} \} P_{\sigma_0} = \{(3,1), (2,+\infty)\}$

For σ'_0 such that $\sigma'_0(v_1) = v_3$:

$$\begin{array}{ll} v_0 v_1 v_3 : \text{player 0: } 2, & \text{env: } (2,1) \\ v_0 v_2 v_5 : \text{player 0: } +\infty, & \text{env: } (2,+\infty) \\ v_0 v_2 v_4 : \text{player 0: } 2, & \text{env: } (+\infty,2) \end{array} \right\} P_{\sigma_0} = \{(2,1), (+\infty,2)\}$$

Pareto Synthesis

Let $\mathcal{G} = (V, E, V_0, (T_i, w_i)_{0 \le i \le k})$ and $c \in \mathbb{N}$, Non-Cooperative Pareto Synthesis (NCPS) problem:

 $\exists \sigma_0, \ \forall \pi \in \mathsf{Plays}_{\sigma_0}, \ \ \mathsf{cost}_{\mathsf{env}}(\pi) \in \mathsf{P}_{\sigma_0} \Rightarrow \mathsf{cost}_0(\pi) \leq c.$

Cooperative Pareto Synthesis (CPS) problem:

 $\exists \sigma_0, \ \exists \pi \in \mathsf{Plays}_{\sigma_0}, \ \operatorname{cost}_{\mathsf{env}}(\pi) \in P_{\sigma_0} \wedge \operatorname{cost}_0(\pi) \leq c.$

Pareto Results

	Coop. synthesis	Non-coop. synthesis
Pareto, weights	PSPACE-complete	NEXPTIME-complete ¹
Pareto, qualitative	PSPACE-complete	NEXPTIME-complete ²

Verification variants: given a strategy σ_0 defined by a **deterministic** Mealy machine, is σ_0 a solution to a synthesis problem ? (Is every σ_0 defined by a **nondeterministic** Mealy machine a solution ?)

	Non-coop. verif. (det.)	Non-coop. verif. (nondet.)
Pareto, weights	$\Pi_2^{\rm P}$ -complete	PSPACE-complete
Pareto, qualitative	Π_2^{P} -complete	PSPACE-complete

²Bruyère, Raskin, and Tamines, "Stackelberg-Pareto Synthesis", CONCUR 2021

Christophe Grandmont

¹Brihaye, Bruyère, and Reghem, "Quantitative Reachability Stackelberg-Pareto Synthesis is NEXPTIME-Complete", RP 2023

All results

Nash variants: instead of asking $cost_{env}(\pi) \in P_{\sigma_0}$, ask that π is the outcome of a Nash Equilibrium. Restricted environment: e.g. force $\mathcal{P} = \{0, 1\}$ for a 1-env (one-player).

	Coop. synthesis	Non-coop. synthesis	Non-coop. verif. (det.)	Non-coop. verif. (nondet.)
Pareto, weights	PSPACE-complete	NEXPTIME-complete ³	Π ^P ₂ -complete	PSPACE-complete
Pareto, qualitative	PSPACE-complete	NEXPTIME-complete ⁴	Π ₂ ^P -complete	PSPACE-complete
Nash, weights Nash, qualitative	NP-complete NP-complete ⁵	Unknown (EXPTIME-hard) PSPACE-complete ⁵	coNP- complete coNP- complete⁶	coNP- complete coNP- complet e ⁶
Nash, weights, 2-env	-	Unknown (EXPTIME-hard)	-	-
Nash, weights, 1-env	NP-complete	EXPTIME (PSPACE-hard)	coNP	coNP- complete

Thank you !

⁶Christophe Grandmont, Master's Thesis 2023

Christophe Grandmont

As Soon as Possible but Rationally

³Brihaye, Bruyère, and Reghem, "Quantitative Reachability Stackelberg-Pareto Synthesis is NEXPTIME-Complete", RP 2023

⁴Bruyère, Raskin, and Tamines, "Stackelberg-Pareto Synthesis", CONCUR 2021

⁵Condurache et al., "The Complexity of Rational Synthesis", ICALP 2016